We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Technology Improves Ultrasonic Tumor Ablation

By MedImaging International staff writers
Posted on 13 Apr 2017
Print article
Image: The new UCSR transducer and schematic of the axisymmetric cylindrical coordinate system (Photo courtesy of Feng Shan et al).
Image: The new UCSR transducer and schematic of the axisymmetric cylindrical coordinate system (Photo courtesy of Feng Shan et al).
A novel high-intensity focused ultrasound (HIFU) ultrasound transducer can be used to generate a steady, standing-wave field with a subwavelength-scale focal region and extremely high intensity.

To achieve subwavelength focusing, researchers at Nanjing University the Chinese Academy of Medical Sciences and Chongqing Medical University developed a semi-enclosed, ultrasonic spherical cavity resonator (USCR) with two open ends. The size of the focal region generated by the USCR is 50-70% of the millimeter-scale wavelength, with a pressure amplitude gain over three orders of magnitude, rapidly raising the temperature in focal region to above 65 °C.

In contrast, the size of the focal region generated by a traditional concave spherical transducer is about 10 times the wavelength, and the pressure amplitude gain is generally lower than 200. The researchers suggest that the level of intensity channeled through the tighter focal region of the new transducer may be a significant improvement in HIFU for targeted cancer treatments. The researchers are now planning to build a multiphase lattice Boltzmann method (LBM) model to study bubble dynamics, cavitation, and collapse jetting using the USCR. The study was published in the March 2017 issue of Journal of Applied Physics.

“The size of the focal region generated by conventional spherical concave transducers is restricted by acoustic diffraction to usually the order of the ultrasound wavelength, but this does not meet the needs of more sophisticated treatments,” said Dong Zhang, PhD, of the NJU Institute of Acoustics. “Because it is crucial to reduce the size of the focal region while supplying sufficient ultrasonic energy, we were prompted to design a new kind of ultrasonic transducer.”

HIFU technology is based on nonlinear acoustic mathematical optimization methods to analyze and simulate the propagation of sound in material. The information is then used to enhance the shape of an acoustic lens so that that ultrasound pressure is focused precisely on the location of the tissue to be ablated, while the surrounding tissue retains as little damage as possible.

Mini C-arm Imaging System
Fluoroscan InSight FD
LED-Based X-Ray Viewer
Dixion X-View
Portable X-ray Unit
AJEX140H
40/80-Slice CT System
uCT 528

Print article

Channels

Nuclear Medicine

view channel
Image: A repurposed ALS drug has become an imaging probe to help diagnose neurodegeneration (Photo courtesy of St. Jude Children’s Research Hospital)

Innovative PET Imaging Technique to Help Diagnose Neurodegeneration

Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease, are often diagnosed only after physical symptoms appear, by which time treatment may no longer be effective.... Read more

General/Advanced Imaging

view channel
Image: Whole-brain PACT system and in vivo morphological imaging (Photo courtesy of Advanced Science)

Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring

Stroke is the second leading cause of death globally, claiming millions of lives each year. Ischemic stroke, in particular, occurs when a blood vessel that supplies blood to the brain becomes blocked.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.