We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Lung Ultrasound Used to Manage Critically Ill COVID-19 Patients Leads to Huge Time Savings as Compared to Chest CT

By MedImaging International staff writers
Posted on 22 Jun 2021
Print article
Image: Mindray DP-50 Portable USG System (Photo courtesy of Mindray)
Image: Mindray DP-50 Portable USG System (Photo courtesy of Mindray)
The use of lung ultrasound allows medical personnel to monitor the progress of COVID-19 patients with considerable time savings as compared to traditional radiology, according to new research.

In their study, researchers from the University of Udine (Udine, Italy) calculated the time necessary to perform lung ultrasound in critically ill COVID-19 patients. Lung ultrasound is a well-established diagnostic tool in acute respiratory failure, and it is particularly suited for identification, grading, and follow-up of lung involvement severity. In critically ill COVID-19 patients, lung ultrasound is an alternative to chest radiography, chest CT or electric impedance tomography to quantify pulmonary impairment, follow lung involvement changes, or predict an intensive care unit (ICU) stay of more than 30 days or death.

Since medical personnel involved in the treatment of COVID-19 patients wear special protective equipment, it increases the workload dramatically through temperature imbalance, touch impairment, communication problems, and visual difficulties. In this specific work scenario, lung ultrasound may be seen as an extra task that can be a loss of time. Researchers conducted a study to see if the use of lung ultrasound would allow them to monitor the progress of COVID-19 patients with considerable time savings as compared to traditional radiology. Using a Philips Affiniti 70 G ultrasound machine with a convex probe, the team calculated the lung ultrasound in 25 patients admitted to the COVID-19 ICU and the time needed to perform the exam. For scanning 25 different patients, the median time was 4.2 minutes (IQR 3.6-4.5).

To quantify the saved time, the researchers measured the time necessary to prepare, transport, perform and return from a chest CT scan with all the protective equipment. The team calculated a median time required for 25 chest CT scans of 85 minutes (IQR 78.5- 97.5). The time saved for each patient using lung ultrasound would have been about 80.8 minutes. Therefore, the researchers concluded that using lung ultrasound instead of CT to monitor critically ill patients with COVID-19, can free medical personnel to perform other duties.

Additionally, the researchers noted that while repeat CT scans may be impractical and unsafe for patients and operators, lung ultrasound may be the default imaging modality for monitoring patients' conditions throughout their hospital stay and after discharge. However, they cautioned that the use of lung ultrasound does not replace the CT scan, which is necessary to exclude pulmonary or cardiovascular complications in case of the clinical worsening of the patient. Ultimately, the researchers performed a daily topographic ultrasound evaluation of the lung without moving the patient, thereby reducing the number of chest X-rays and CT scans and saving considerable time.

Related Links:
University of Udine

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Digital X-Ray Detector Panel
Acuity G4
New
Transducer Covers
Surgi Intraoperative Covers
New
40/80-Slice CT System
uCT 528

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.