We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




TI-RADS with Deep Learning Algorithm Guide Diagnoses of Pediatric Thyroid Nodules on Ultrasound

By MedImaging International staff writers
Posted on 20 Oct 2022
Print article
Image: ACR TI-RADS and a deep learning algorithm can also guide decisions to perform fine-needle aspiration (Photo courtesy of Pexels)
Image: ACR TI-RADS and a deep learning algorithm can also guide decisions to perform fine-needle aspiration (Photo courtesy of Pexels)

ACR TI-RADS and a deep learning algorithm trained on adult populations offer alternative strategies for evaluating thyroid nodules in children and younger adults, including guiding decisions to perform fine-needle aspiration.

In a new study, researchers at Duke University (Durham, NC, USA) evaluated 139 patients (119 female, 20 male) aged ≤21 years with a thyroid nodule on ultrasound with definitive pathologic results from fine-needle aspiration and/or surgical excision. Single transverse and longitudinal images of one nodule per patient were then extracted. Three radiologists independently characterized nodules based on overall impression (benign vs. malignant) and ACR TI-RADS. A previously developed deep learning algorithm determined malignancy likelihood for each nodule, which was used to derive a risk level. Ultimately, for evaluating thyroid nodules via ultrasound in children and young adults, radiologists’ overall impressions - representing the current standard clinical approach - had mean sensitivity of 58.3% and mean specificity of 79.9%; ACR TI-RADS had mean sensitivity of 85.1% and mean specificity of 50.6%, and a deep learning algorithm had sensitivity of 87.5% and specificity of 36.1%.

“Both ACR TI-RADS and the deep learning algorithm had higher sensitivity, albeit lower specificity, compared with radiologists’ overall impressions,” wrote co-first author Jichen Yang, BSE, from the department of electrical and computer engineering at Duke University. Adding that the algorithm had similar sensitivity, but lower specificity, than ACR TI-RADS, “interobserver agreement was higher for ACR TI-RADS than for overall impressions,” Yang noted.

“Given the heightened priority for sensitivity when evaluating thyroid nodules in children, compared with in adults, the findings support the continued exploration in children of ACR TI-RADS and of the deep learning algorithm,” Yang concluded.

Related Links:
Duke University

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Gold Member
X-Ray QA Meter
T3 RG Pro
Ultrasound Color LCD
U156W
New
Ultrasound Scanner
TBP-5533

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.