We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Ultrasound Breakthrough Could Have Major Impact on Diagnosis and Treatment of Diseases

By MedImaging International staff writers
Posted on 14 Mar 2023
Print article
Image: New ultrasound research could have major impacts on the diagnosis and treatment of diseases (Photo courtesy of Texas A&M University)
Image: New ultrasound research could have major impacts on the diagnosis and treatment of diseases (Photo courtesy of Texas A&M University)

Having precise and sensitive measurements of tissue stiffness is crucial in the medical field as it helps in detecting various diseases. To accurately gauge tissue stiffness, scientists require two distinct measurements: Young's modulus (YM) and Poisson's ratio (PR). YM serves as a mechanical parameter for tissue stiffness, while PR measures the compressibility of the tissue. Although non-invasive measurement of these parameters is challenging, a new technique now enables researchers to determine both YM and PR accurately without invasive procedures.

Investigators at Texas A&M University (College Station, TX, USA) have focused their efforts on developing imaging biomarkers that clinicians can use to assess the health of patients. The team's primary focus is on biomarkers for living tissue, with a particular interest in tissue stiffness. In an effort to determine YM and PR, the researchers utilized an ultrasound imaging system to collect data while simultaneously applying external pressure on the tissue. They processed the ultrasound data to pinpoint the internal mechanical changes happening in the tissue.

The researchers developed the model by starting with the application of Eshelby's inclusion problem, a widely used method in soil sciences, to measure tissue in the human body. By utilizing this method, they could effectively apply a proven theory to modern biological science. The study serves as an initial and fundamental step, with potential long-term benefits for many individuals worldwide. The study is not only the first to accurately measure both YM and PR, but the method is also among the first to treat tissue as a changing material. Moving forward, the researchers aim to test the model's applicability in the human body.

“This beginning step in our research is very promising,” said Dr. Raffaella Righetti, an associate professor in the Department of Electrical and Computer Engineering at Texas A&M University. “In the future, this method could be used to help determine the diagnosis and prognosis of diseases in the body. Once physicians begin treatment of a disease, they could also use it to monitor how the disease is changing in response to the treatment.”

Related Links:
Texas A&M University

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition
New
3T MRI Scanner
MAGNETOM Cima.X
Ultrasound Color LCD
U156W

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.