We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Wearable Ultrasound Patch Marks Breakthrough in Deep Tissue Monitoring

By MedImaging International staff writers
Posted on 04 May 2023
Print article
Image: The wearable ultrasound patch measures tissue stiffness more effectively (Photo courtesy of UC San Diego)
Image: The wearable ultrasound patch measures tissue stiffness more effectively (Photo courtesy of UC San Diego)

Ultrasound examination of tissues' biomechanical properties can assist in detecting and managing pathophysiological conditions, tracking lesion development, and evaluating rehabilitation progress. Engineers have now developed a stretchable ultrasonic array that enables non-invasive, serial, three-dimensional imaging of tissues up to four centimeters beneath the human skin's surface, with a spatial resolution of 0.5 millimeters. This novel method offers a non-invasive, long-term alternative to current approaches, boasting improved penetration depth.

The elastography monitoring system developed by engineers at the University of California San Diego (La Jolla, CA, USA) enables serial, non-invasive, and three-dimensional mapping of deep tissue mechanical properties, with several crucial applications. In medical research, serial data on pathological tissues can offer vital information on disease progression, such as cancer, which typically causes cells to stiffen. Wearable ultrasound patches not only perform the detection function of conventional ultrasound but also overcome its limitations, such as one-time testing, hospital-based testing, and the need for staff operation. This could help decrease misdiagnoses and fatalities while significantly reducing costs by offering a non-invasive and affordable alternative to traditional diagnostic procedures.

The device features a 16 by 16 array, with each element consisting of a 1-3 composite element and a silver-epoxy composite backing layer designed to absorb excessive vibration, thereby expanding the bandwidth and enhancing axial resolution. The array conforms to human skin and acoustically couples with it, allowing for accurate elastographic imaging validated through magnetic resonance elastography. The researchers aim to further improve the device by incorporating an elastomer layer with a known modulus, a so-called calibration layer, to obtain quantitative, absolute values of tissues' moduli. This enhancement would provide more comprehensive information about tissues' mechanical properties, thereby further refining the ultrasonic devices' diagnostic capabilities.

Besides monitoring cancerous tissues, this technology can help medical professionals accurately track liver fibrosis and cirrhosis progression and determine the most suitable treatment course. Moreover, by monitoring changes in tissue stiffness, the technology can offer valuable insights into musculoskeletal disorders' progression, such as tendonitis, tennis elbow, and carpal tunnel syndrome, allowing doctors to develop personalized treatment plans. Additionally, by monitoring arterial wall elasticity, doctors can detect early signs of myocardial ischemia and make timely interventions to prevent further damage.

“This new wave of wearable ultrasound technology is driving a transformation in the healthcare monitoring field, improving patient outcomes, reducing healthcare costs and promoting the widespread adoption of point-of-care diagnosis,” said Yuxiang Ma, a visiting student in the Xu group and study coauthor. “As this technology continues to develop, it is likely that we will see even more significant advances in the field of medical imaging and healthcare monitoring.”

Related Links:
University of California San Diego 

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Portable Color Doppler Ultrasound System
S5000
Radiology Software
DxWorks
Portable Color Doppler Ultrasound Scanner
DCU10

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.