We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Ultrasound Microvessel Imaging with AI to Improve Cancer Detection

By MedImaging International staff writers
Posted on 23 Oct 2023
Print article
Image: Researchers are advancing ultrasound microvessel imaging and AI to improve cancer detection (Photo courtesy of Mayo Clinic)
Image: Researchers are advancing ultrasound microvessel imaging and AI to improve cancer detection (Photo courtesy of Mayo Clinic)

Ultrasound is widely recognized for its role in monitoring fetal development during pregnancy. However, it's also a valuable tool for inspecting abnormal tissue masses and nodules that could be cancerous. Traditional ultrasound machines often fall short when it comes to revealing the tiny blood vessels, or microvessels, that make up these tumors. To address this gap, researchers have created a software tool that enhances the resolution of ultrasound imaging. This high-resolution ultrasound imaging software is compatible with a range of ultrasound machines and promises to significantly enhance the clarity and detail of images.

The investigational software named quantitative high-definition microvessel imaging (q-HDMI) was developed by researchers at Mayo Clinic (Rochester, MN, USA). It has the capability to produce high-resolution 2D and 3D images of microvessels as small as 150 microns, about double the thickness of a human hair. The researchers also developed an algorithm that incorporates specific biomarkers related to the small vessels' characteristics, such as shape and pattern. This algorithm categorizes the imaged masses as either benign or malignant. In a clinical trial, the q-HDMI software, coupled with artificial intelligence (AI), successfully identified a malignant breast cancer mass measuring just 3 millimeters across in a 40-year-old woman. Early detection of such tiny cancerous masses can be crucial for successful treatment.

The researchers extended their study by applying this new technology to 521 patients with suspicious breast masses who had previously undergone traditional ultrasound imaging. The results were remarkable: the technology achieved nearly a 100% accuracy rate in distinguishing between benign and malignant tumors, irrespective of their size. The team then focused on thyroid nodules, testing 92 patients. Thyroid nodules are prevalent, and it's often difficult to discern between cancerous and non-cancerous ones using standard imaging techniques. The team identified 12 new biomarkers to differentiate between the two and integrated them into their AI algorithm, which achieved an 84% accuracy rate. This is a significant improvement over the 35-75% accuracy rate of traditional ultrasound techniques. The researchers believe their q-HDMI tool could be especially beneficial in regions with limited medical expertise and resources, such as rural and developing areas. They are also partnering with cancer specialists to adapt the q-HDMI tool for ongoing cancer treatment monitoring, enabling adjustments to individualized therapies in real time.

"If we can visualize and capture the microvessel in the earliest stages of cancer, we can better diagnose and treat it earlier, which improves the outcome for the patient," said physician-scientist Azra Alizad, M.D., who specializes in ultrasound technology for cancer imaging.

"This technology provides a quantitative value that shows the probability of malignancy," added biomedical engineering scientist Mostafa Fatemi, Ph.D. "It's a tool to extract information in a way that can be useful to clinicians."

Related Links:
Mayo Clinic 

New
Digital Radiographic System
OMNERA 300M
New
Mini C-arm Imaging System
Fluoroscan InSight FD
Ultrasound Scanner
TBP-5533
New
Digital X-Ray Detector Panel
Acuity G4

Print article

Channels

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–positron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.