We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Non-Invasive Ultrasound Imaging Device Diagnoses Risk of Chronic Kidney Disease

By MedImaging International staff writers
Posted on 27 Mar 2024
Print article
Image: The non-invasive diagnostic device is expected to advance the clinical management of chronic kidney disease (Photo courtesy of PolyU)
Image: The non-invasive diagnostic device is expected to advance the clinical management of chronic kidney disease (Photo courtesy of PolyU)

Managing chronic kidney disease (CKD) efficiently is imperative for public health, as it represents a progressive condition affecting 10% of the worldwide population. The path from CKD to end-stage renal disease (ESRD) often involves renal fibrosis, making early detection and continuous monitoring critical for effective treatment and prognosis. Correctly identifying patients at elevated risk for advancing renal fibrosis remains a complex task in clinical settings. Researchers have now created a computer-based diagnostic tool that combines ultrasound (US) imagery with specific clinical indicators to evaluate the risk of moderate-to-severe renal fibrosis progression in individuals with CKD.

By leveraging advanced health technology, this innovative diagnostic tool Smart-CKD (S-CKD) developed by researchers from the Hong Kong Polytechnic University (PolyU, Hong Kong) can improve CKD management and patient monitoring. S-CKD integrates three essential clinical parameters: the patient's age, the ultrasonic renal length, and the end-diastolic velocity in the interlobar renal artery, all obtainable through regular medical follow-ups. Utilizing machine learning, S-CKD achieves a diagnostic accuracy of 80%. Available as an online web-based tool and an offline document, S-CKD offers a convenient, real-time, non-invasive method for clinicians to assess renal fibrosis risk, thus guiding therapeutic decisions, patient counseling, and follow-up scheduling.

Additionally, the research group has developed a machine learning-based model using 2-D shear wave elastography (SWE) combined with CKD clinical data to assess renal fibrosis. Despite the advancements in ultrasound elastography for diagnosing renal fibrosis, the technique's effectiveness heavily relies on the operator's skill, posing challenges in settings with limited resources. S-CKD aims to facilitate the application of ultrasound elastography in various clinical environments, enabling accurate, low-cost risk stratification using data easily extracted from medical records and standard imaging assessments.

Further, the team has introduced an ultrasound radiomics analysis, progressing from clinical data to in-depth ultrasound image examination. Radiomics, a cutting-edge field, extracts a multitude of imaging features invisible to the human eye from medical images, building models for non-invasive renal fibrosis evaluations. This radiomics method combines ultrasound imaging with clinical data to create a diagnostic model visualized through a web-based calculator. Although current models require manual input from medical professionals, future efforts will explore artificial intelligence, including deep learning, to develop a fully automated diagnostic system.

“The implementation of S-CKD holds the potential to assist healthcare practitioners in tailoring medical judgments and optimizing post-treatment protocols for CKD patients,” said Prof. Michael Tin Cheung YING, Associate Head and Professor of Department of Health Technology and Informatics at PolyU. “By utilizing non-invasive medical imaging results and basic demographic data, this tool offers a cost-effective solution for guiding patient management, thereby contributing to notable clinical advantages.”

Related Links:
PolyU 

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Transducer Covers
Surgi Intraoperative Covers
New
Mini C-arm Imaging System
Fluoroscan InSight FD
NMUS & MSK Ultrasound
InVisus Pro

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.