We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Novel Ultrasound-Launched Targeted Nanoparticle Eliminates Biofilm and Bacterial Infection

By MedImaging International staff writers
Posted on 17 Apr 2024
Print article
Image: Schematic diagram of the ultrasound-stimulated phase-shift nanoparticle drug delivery system for biofilm therapy (Photo courtesy of BIO Integration)
Image: Schematic diagram of the ultrasound-stimulated phase-shift nanoparticle drug delivery system for biofilm therapy (Photo courtesy of BIO Integration)

Biofilms, formed by bacteria aggregating into dense communities for protection against harsh environmental conditions, are a significant contributor to various infectious diseases. Biofilms frequently develop on the surfaces of organs and medical devices, such as bones, teeth, urethras, catheters, stents, and contact lenses, leading to complicated infectious diseases. Traditional treatment methods for biofilm-related infections typically involve high doses of antibiotics, which may create severe antibiotic resistance. Among the pathogens that are especially associated with antibiotic resistance, infections caused by Pseudomonas aeruginosa pose a global health threat. Now, a novel ultrasound-launched targeted nanoparticle has been shown to universally destroy biofilms, target specific bacteria, administer antibiotics, and eliminate bacteria through ultrasonic cavitation and antibacterial sonodynamic therapy.

The nanoparticle developed by researchers at Zhejiang University (Hangzhou, China) consists of poly (lactic-co-glycolic acid) loading ciprofloxacin and perfluoropentane with a bacteria-targeted antibody installed on the nanoparticle for binding to specific bacteria. This nanoparticle is highly responsive to ultrasound, and the rapid liquid-gas phase transition of perfluoropentane creates a cavitation effect that destroys the extracellular polymeric substances of the biofilm and enables the antibiotics to penetrate deeper. Additionally, under ultrasonic stimulation, ciprofloxacin promotes the production of reactive oxygen species, enhancing its bactericidal impact and potent anti-infective activity in vivo.

Thus, this innovative ultrasound-activated targeted nanoparticle provides an effective means of antibiotic delivery, bacterial elimination, and biofilm removal. The nanoparticle demonstrated a sensitive response to ultrasonic stimulation, including rapid liquid-gas phase transition, cavitation effect, and biofilm destruction for enabling deeper antibiotics penetration. Additionally, the bacteria-specific antibody was conjugated on the nanoparticle to target and bind to bacteria. Under ultrasound irradiation, ciprofloxacin generated reactive oxygen species in the bacterial cells, effectively killing the bacteria. Therefore, the ultrasound-launched targeted nanoparticle represents a promising approach to manage antibiotic resistance and the removal of biofilms via ultrasonic cavitation and antibacterial sonodynamic therapy.

Related Links:
Zhejiang University

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Silver Member
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform
New
DRF DR & Remote Fluoroscopy Solution
CombiDiagnost R90
New
Mobile Barrier
Tilted Mobile Leaded Barrier

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Dr. Amar Kishan notes that MRI-guided approach enables the use of significantly narrower planning margins when delivering radiation (Photo courtesy of UCLA)

MRI-Guided Radiation Therapy Reduces Long-Term Side Effects in Prostate Cancer Patients

Stereotactic body radiotherapy (SBRT) is a standard treatment for localized prostate cancer. However, the side effects of this treatment can be severe and long-lasting, impacting a patient’s urinary, bowel,... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.