We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Ultrasound Technologies Improve Diagnosis for Cancer, Liver Disease and Other Pathologies

By MedImaging International staff writers
Posted on 17 Sep 2024
Print article
Image: An example of a conventional ultrasound B-scan showing a suspicious breast lesion (left image) and with the new H-scan analysis showing the possibly malignant mass in color (right image) (Photo courtesy of Jihye Baek)
Image: An example of a conventional ultrasound B-scan showing a suspicious breast lesion (left image) and with the new H-scan analysis showing the possibly malignant mass in color (right image) (Photo courtesy of Jihye Baek)

Several diseases, including some cancers, can remain hidden or difficult to detect using traditional medical imaging. However, new technologies developed by researchers may soon enhance ultrasound's effectiveness in diagnosing conditions such as cancer, liver disease, and other pathologies.

The United States Patent and Trademark Office has recently granted four patents for advanced diagnostic ultrasound technology created by researchers at the University of Rochester (Rochester, NY, USA). Using advanced physics, mathematics, and scattering theory, the researchers have developed techniques to extract previously hidden features from ultrasound data, revealing potential issues with organs like the liver, thyroid, or breast. Some of these innovations have already been licensed to startups aiming to bring these advancements into clinical settings to benefit patients.

Two of the patents are associated with the H-scan technique, while the other two focus on reverberant shear wave fields. The H-scan technology enhances traditional black-and-white ultrasound images by adding color to specific features—for example, coding fat deposits in the liver as yellow or indicating cancer in the breast with red. The technologies related to reverberant shear wave fields improve elastography, which measures tissue stiffness. These advancements provide quicker, more cost-effective methods for delivering critical diagnostic information to doctors and radiologists. Since these technologies focus on ultrasound image processing, they can be seamlessly integrated into existing ultrasound equipment without the need for new hardware.

“These are inventions that you can retrofit to existing imaging systems. You can reprogram the scanners to process our way and out comes this new analysis and information,” said Kevin Parker, the William F. May Professor of Engineering at the University’s Hajim School of Engineering & Applied Sciences, who has developed the ultrasound technologies. “We don’t have to recreate a whole new generation of ultrasound scanners.”

Related Links:
University of Rochester

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
DRF DR & Remote Fluoroscopy Solution
CombiDiagnost R90
New
Ultrasound Imaging System
P12 Elite
New
Opaque X-Ray Mobile Lead Barrier
2594M

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Dr. Amar Kishan notes that MRI-guided approach enables the use of significantly narrower planning margins when delivering radiation (Photo courtesy of UCLA)

MRI-Guided Radiation Therapy Reduces Long-Term Side Effects in Prostate Cancer Patients

Stereotactic body radiotherapy (SBRT) is a standard treatment for localized prostate cancer. However, the side effects of this treatment can be severe and long-lasting, impacting a patient’s urinary, bowel,... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.