We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Wearable Ultrasound Patch Enables Continuous Blood Pressure Monitoring

By MedImaging International staff writers
Posted on 21 Nov 2024
Print article
Image: This small, stretchy skin patch uses ultrasound to continuously monitor blood pressure deep inside the body (Photo courtesy of David Baillot/UC San Diego Jacobs School of Engineering)
Image: This small, stretchy skin patch uses ultrasound to continuously monitor blood pressure deep inside the body (Photo courtesy of David Baillot/UC San Diego Jacobs School of Engineering)

Traditional blood pressure measurements using a cuff provide a single, snapshot reading, which can miss important patterns in blood pressure fluctuations. Researchers have now developed an advanced wearable ultrasound patch that allows for continuous, noninvasive blood pressure monitoring. This wearable device offers a constant flow of blood pressure waveform data, enabling detailed tracking of blood pressure trends. The device, which has undergone extensive clinical validation on more than 100 patients, marks a major achievement in continuous cardiovascular health monitoring. Published in Nature Biomedical Engineering, this technology has the potential to transform blood pressure monitoring both in clinical settings and at home.

Developed by researchers at the University of California San Diego (La Jolla, CA, USA), the patch, about the size of a postage stamp, is small, flexible, and adheres to the skin. When placed on the forearm, it provides real-time, precise readings of blood pressure from deep within the body. The patch is composed of silicone elastomer and includes a series of small piezoelectric transducers sandwiched between stretchable copper electrodes. These transducers emit and receive ultrasound waves that track changes in the diameter of blood vessels, translating these signals into blood pressure readings. The new wearable patch builds on an earlier prototype, improving upon it with two key innovations aimed at enhancing its performance for continuous monitoring.

First, the piezoelectric transducers were packed closer together, expanding the patch’s coverage to better target smaller, clinically relevant arteries, such as the brachial and radial arteries. Second, a backing layer was added to dampen excess vibrations from the transducers, improving the clarity of the signals and the accuracy of the tracking. In validation tests, the patch’s results were comparable to those from a traditional blood pressure cuff and the arterial line, a clinical device used for continuous blood pressure monitoring, though the arterial line is highly invasive, limits patient mobility, and can cause discomfort. The patch, however, offers a more simple, reliable, and comfortable alternative.

The researchers performed extensive safety and accuracy tests, involving 117 participants. One set of tests had seven individuals wearing the patch during daily activities like cycling, raising arms and legs, performing mental tasks, meditating, eating, and drinking energy drinks. In a larger group of 85 participants, the patch was evaluated during postural changes, such as moving from sitting to standing. In all tests, the patch’s readings closely matched those of a blood pressure cuff. The device was also tested in a clinical setting with 21 patients in a cardiac catheterization lab and four patients in the intensive care unit after surgery, where the patch’s measurements closely aligned with those from the arterial line. This shows the patch's potential as a noninvasive alternative for blood pressure monitoring. Looking forward, the team is preparing for large-scale clinical trials and plans to incorporate machine learning to enhance the device’s capabilities. They are also working on a wireless, battery-powered version for long-term use, which will integrate seamlessly with hospital systems.

“A big advance of this work is how thoroughly we validated this technology, thanks to the work of our medical collaborators,” said Sheng Xu, a professor in the Aiiso Yufeng Li Family Department of Chemical and Nano Engineering at UC San Diego, in whose lab the device was pioneered. “Blood pressure can be all over the place depending on factors like white coat syndrome, masked hypertension, daily activities or use of medication, which makes it tricky to get an accurate diagnosis or manage treatment. That’s why it was so important for us to test this device in a wide variety of real-world and clinical settings. Many studies on wearable devices skip these steps during development, but we made sure to cover it all.”

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Portable Color Doppler Ultrasound System
S5000
New
Ultrasound Imaging System
P12 Elite
New
Diagnostic Ultrasound System
MS1700C

Print article

Channels

MRI

view channel
Image: MRI microscopy of mouse and human pancreas with respective histology demonstrating ability of DTI maps to identify pre-malignant lesions (Photo courtesy of Bilreiro C, et al. Investigative Radiology, 2024)

Pioneering MRI Technique Detects Pre-Malignant Pancreatic Lesions for The First Time

Pancreatic cancer is the leading cause of cancer-related fatalities. When the disease is localized, the five-year survival rate is 44%, but once it has spread, the rate drops to around 3%.... Read more

General/Advanced Imaging

view channel
Image: The results of the eight-view 3D CT reconstruction from a public dataset (Photo courtesy of Medical Physics, doi.org/10.1002/mp.12345)

AI Model Reconstructs Sparse-View 3D CT Scan With Much Lower X-Ray Dose

While 3D CT scans provide detailed images of internal structures, the 1,000 to 2,000 X-rays captured from different angles during scanning can increase cancer risk, especially for vulnerable patients.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.