We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Bedside Monitoring of Brain Blood Flow in Stroke Victims

By MedImaging International staff writers
Posted on 26 Mar 2009
A new study describes the first successful demonstration of a noninvasive optical device to monitor cerebral blood flow in patients with acute stroke, a leading cause of disability and death.

Researchers at the University of Pennsylvania (Penn, Philadelphia, USA) have developed diffuse correlation spectroscopy (DCS), a technology for noninvasive transcranial measurement of cerebral blood flow (CBF) that can be hybridized with near-infrared spectroscopy (NIRS). As part of the development, the research then examined the utility of DCS and NIRS to measure the effects of head-of-bed (HOB) positioning of the patient on CBF at 30 degrees, 15 degrees, 0 degrees, -5 degrees, and 0 degrees angulations in patients with acute ischemic stroke affecting the frontal cortex, as well as in controls. HOB positioning was found to significantly alter CBF, oxy-hemoglobin (HbO2), and total-hemoglobin (THC) concentrations. Moreover, the researchers also found that the presence of an ipsilateral infarct was a significant effect for all parameters. The results were found to be consistent with the notion of impaired CBF autoregulation in the infarcted hemisphere. The study was published in the March 2009 issue of Optics Express.

"Our preliminary study demonstrates that blood flow changes can be reliably detected from stroke patients and also suggests that blood flow responses vary significantly from patient to patient," said lead author Turgut Durduran, Ph.D., of the High Energy group at the department of physics.

"Stroke is caused by a reduction in blood flow to the brain, yet brain blood flow is rarely if ever measured in stroke patients because most existing methods to measure blood flow require costly instrumentation that is not portable," said clinical collaborator John Detre, M.D., of the department of neurology in the School of Medicine. "The ability to quantify tissue hemodynamics at the bedside would provide new opportunities both to learn more about blood-flow changes in patients with acute stroke and to optimize interventions to increase blood flow for individual patients, potentially even allowing these interventions to be administered before the onset of new neurological symptoms."

The new noninvasive system uses embedded optical probes that are placed over major cortical blood vessels in each hemisphere of the brain. The probes use diffusing light to detect physiological changes such as blood flow, blood-oxygen saturation (SpO2), and hemoglobin concentration to inform clinicians about their treatments. The system uses lasers, photon-counting detectors, radio-frequency electronics, data processors, and a computer monitor to display user-friendly images of functional information to physicians and nurses.

Related Links:

University of Pennsylvania





Digital X-Ray Detector Panel
Acuity G4
New
Radiation Shielding
Oversize Thyroid Shield
Silver Member
X-Ray QA Meter
T3 AD Pro
40/80-Slice CT System
uCT 528
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

MRI

view channel
Image: Comparison showing 3T and 7T scans for the same participant (Photo courtesy of P Simon Jones/University of Cambridge)

Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients

Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more

Ultrasound

view channel
Image: The new type of Sonogenetic EchoBack-CAR T cell (Photo courtesy of Longwei Liu/USC)

Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods

Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.