We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Fast Neutrons Help Produce Medical Isotopes

By MedImaging International staff writers
Posted on 21 Jun 2015
An innovative process is being used to create a stable commercial source of molybdenum radioisotopes, widely used in diagnostic imaging.

Developed by researchers at Argonne National Laboratory (ANL; Lemont, IL, USA), in cooperation with SHINE Medical Technologies (Monona, WI, USA) the process uses fast neutrons to bombard an aqueous solution of low enriched uranium (LEU), creating fission products that include molybdenum-99 (Mo-99), the parent isotope of technetium-99m (Tc-99m), a radioactive tracer element used in more than 40 million medical diagnostic procedures each year in the United States alone.

The isotope is created when Mo-99 spontaneously decays through the release of a beta particle from its nucleus. Because of its unstable nature, Mo-99 does not occur naturally and is traditionally produced using highly enriched uranium (HEU) in nuclear reactors. Mo-99 is also not produced in the United States, leaving the country to rely on isotope supply from international sources, including a Canadian research reactor that will cease regular production next year, which will reduce the global supply.

The SHINE process is easier to implement, since it involves the bombardment of a LEU uranyl sulfate solution with fast neutrons generated on-site in the ANL linear accelerator. The LEU breaks down after bombardment into hundreds of different isotopes, including Mo-99, which is the result of six percent of the fissions created during the process. The Mo-99 must then be separated from the other fission products before it can be transported for use.

“The development of techniques for domestic production of Mo-99 is a critical national priority and one fully supported by our work at Argonne,” said George Vandegrift, PhD, an ANL distinguished fellow who leads the Mo-99 development efforts. “Millions of patients each year rely on Mo-99 for life-saving diagnostic procedures, but the stability and safety of that supply is threatened by a variety of factors.”

Tc-99m is used in about 85% of all medical imaging procedures worldwide. It is currently made in reactors in Canada, the Netherlands, Belgium, France, Australia, and South Africa.

Related Links:

Argonne National Laboratory
SHINE Medical Technologies



Ultra-Flat DR Detector
meX+1717SCC
Digital Radiographic System
OMNERA 300M
Radiology Software
DxWorks
Ultrasonic Pocket Doppler
SD1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

MRI

view channel
Image: The AI tool can help interpret and assess how well treatments are working for MS patients (Photo courtesy of Shutterstock)

AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans

Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.