We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Printed Kidney Phantoms Aid Radiation Dosing Calibration

By MedImaging International staff writers
Posted on 22 Dec 2016
A new study suggests that three dimensional (3D) printed kidney phantoms could help determine calibration constants in quantitative single-photon emission computed tomography/ computerized tomography (SPECT/CT) imaging.

Researchers at the University of Würzburg (Germany) created a set of four one-compartment kidney dosimetry phantoms and their spherical counterparts, with filling volumes ranging from 8 mL (for newborns) and 123 mL (for adults). The phantom designs were based on the outer kidney dimensions, as provided by medical internal radiation ddose (MIRD) guidelines. Based on the designs, the four refillable, waterproof, and chemically stable models were manufactured using fused deposition polylactide (PLA) modeling on a Conrad (Wernberg-Köblitz, Germany) Renkforce RF1000 FFF 3D printer.

The researchers then applied nuclide-dependent SPECT/CT calibration factors for technetium-99m (Tc-99m), lutetium-177 (Lu-177), and iodine-131 (I-131) to assess the phantoms accuracy when used in quantitative imaging for internal renal dosimetry. The results showed that for the largest phantom, the volumes of interest had to be enlarged by 1.2 mm for 99mTc, 2.5 mm for 177Lu, and 4.9 mm for 131 in all directions to obtain calibration factors comparable to reference. In decreasing phantom volumes, the difference between corresponding sphere–kidney pairs was small, at less than 1.1% for all volumes. The study was published on December 1, 2016, in The Journal of Nuclear Medicine.

“This research shows a way of producing inexpensive models of patient-specific organs/lesions for providing direct and patient-specific calibration constants. This is particularly important for imaging systems suffering from poor spatial resolution and ill-defined quantification, such as SPECT/CT,” said lead author Johannes Tran-Gia, PhD. “With comparably low costs and submillimeter resolution, 3D printing techniques hold the potential for manufacturing individualized anthropomorphic phantoms in many clinical applications in nuclear medicine.”

An imaging phantom is designed to respond in a similar manner to how human tissues and organs would act in order to evaluate, analyze, and tune performance of a specific imaging modality. Phantoms made for radiography may therefore hold various quantities of x-ray contrast agents with absorbing properties similar to normal tissue, so as to tune image contrast or modulate radiation exposure. For ultrasound, on the other hand, a phantom with similar rheological and ultrasound scattering properties to real tissue would be essential, but x-ray absorbing properties would not be needed.

Related Links:
University of Würzburg
Conrad

New
X-Ray Illuminator
X-Ray Viewbox Illuminators
MRI System
Ingenia Prodiva 1.5T CS
40/80-Slice CT System
uCT 528
Ultrasound Imaging System
P12 Elite
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

MRI

view channel
Image: Combining AI with bpMRI improves detection of clinically significant prostate cancer (Photo courtesy of 123RF)

Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer

Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more

Ultrasound

view channel
Image: The model trained on echocardiography, can identify liver disease in people without symptoms (Photo courtesy of 123RF)

Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms

Echocardiography is a diagnostic procedure that uses ultrasound to visualize the heart and its associated structures. This imaging test is commonly used as an early screening method when doctors suspect... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.