We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Raman Spectroscopy Reveals Tumor Resistance to Radiation

By MedImaging International staff writers
Posted on 27 May 2019
A new study suggests that Raman spectroscopy can identify subtle differences in a tumor’s biochemical environment that correlate with its susceptibility to radiation therapy (RT).

Researchers at Johns Hopkins University (JHU; Baltimore, MD, USA) and the University of Arkansas (UARK; Fayetteville, AR, USA) conducted a murine study to reveal biomolecular changes in tumors induced by radiation, and uncover the latent differences that separate RT-resistant and RT-sensitive tumors. To do so, they grew tumor xenografts in athymic nude mice and quantified the Raman spectroscopic tissue assessments in both untreated and treated tumors by chemometric analysis of the biomolecular differences in the tumor microenvironment.

They found that Raman spectroscopy measurements revealed significant and reliable differences in lipid and collagen content post-radiation in the tumor microenvironment, with consistently greater changes observed in the RT-sensitive tumors. Based on the findings, they then created an algorithm to identify the difference between RT-resistant and nonresistant tumors, and validated it by applying the Raman technique to untreated tumors. The algorithm separated them into RT-sensitive and resistant categories with a success rate of 97%. The study was published on February 28, 2019, in Cancer Research.

“In addition to accurately evaluating tumor response to therapy, the combination of Raman spectral markers potentially offers a route to predicting response in untreated tumors prior to commencing treatment,” concluded lead author Santosh Paidi, MSc, of JHU, and colleagues. “Combined with its non-invasive nature, our findings provide a rationale for in vivo studies using Raman spectroscopy, with the ultimate goal of clinical translation for patient stratification and guiding adaptation of radiotherapy during the course of treatment.”

"This is only the first step of a larger research endeavor to determine how head and neck cancer tumors respond to radiation,” said senior author mechanical engineer Ishan Barman, PhD, of JHU. “The ultimate goal is to build a miniature probe that can fit into a laryngoscope. Hopefully in the future, then, when a clinician performs an endoscopy and looks at a patient's cancerous tumor, they'll be able to determine whether that tumor will even respond to radiation therapy, and that can improve treatment plans.”

Raman spectroscopy is a form of molecular spectroscopy based on Raman scattering. When a beam of light interacts with a material, part of it is transmitted, part it is reflected, and part of it is scattered; over 99% of the scattered radiation has the same frequency as the incident beam, but a small portion of the scattered radiation has frequencies different from that of the incident beam. The scattered radiation contains information on the particular atoms or ions that comprise the molecule, the chemical bonds connect them, the symmetry of their molecule structure, and the physico-chemical environment where they reside.

Related Links:
Johns Hopkins University
University of Arkansas


New
Mobile Cath Lab
Photon F65/F80
Portable Color Doppler Ultrasound System
S5000
Radiation Therapy Treatment Software Application
Elekta ONE
New
Specimen Radiography System
Trident HD
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

MRI

view channel
Image: Comparison showing 3T and 7T scans for the same participant (Photo courtesy of P Simon Jones/University of Cambridge)

Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients

Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more

Ultrasound

view channel
Image: The new type of Sonogenetic EchoBack-CAR T cell (Photo courtesy of Longwei Liu/USC)

Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods

Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.