We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Algorithms Accurately Predict Tumor Location and Size from Medical Images

By MedImaging International staff writers
Posted on 02 Dec 2024

Cancer patients often have numerous lesions, or pathological changes caused by tumor growth, and capturing all of them is crucial to obtaining a comprehensive view of their condition. Imaging plays a vital role in diagnosing cancer, as accurately determining the location, size, and type of tumors is essential for selecting the appropriate treatment. Two key imaging techniques used are positron emission tomography (PET) and computed tomography (CT). PET uses radionuclides to visualize metabolic processes in the body, as the metabolic activity of malignant tumors is significantly higher than that of benign tissue. Fluorine-18-deoxyglucose (FDG), a radioactively labeled glucose, is commonly used for this purpose. In contrast, CT scans the body layer by layer with an X-ray tube to visualize anatomical structures and locate tumors. Doctors often manually mark tumor sizes on 2D slice images, a process that is both time-consuming and labor-intensive.

Artificial intelligence (AI) has shown great promise in enhancing the analysis of medical images. Deep learning algorithms, for example, can automatically identify tumor locations and sizes. By automating this process, significant time savings can be achieved, and results can be more consistent and accurate. The seven best teams participating in AutoPET, an international competition in medical image analysis, have now reported in the journal Nature Machine Intelligence on how algorithms can detect tumor lesions in PET and CT. Researchers from the Karlsruhe Institute of Technology (KIT, Karlsruhe, Germany) participated in the 2022 AutoPET competition and secured fifth place out of 27 teams, with 359 participants from around the globe. The competition tasked teams with automatically segmenting metabolically active tumor lesions visualized in whole-body PET/CT scans.

The teams used a large annotated PET/CT dataset for training their algorithms, all of which were based on deep learning techniques. This form of machine learning utilizes multi-layered artificial neural networks to detect complex patterns and correlations within large datasets. The results, now published in Nature Machine Intelligence, show that combining the top-performing algorithms into an ensemble approach outperforms individual models in detecting tumor lesions with high efficiency and precision. The researchers note that further refinement of these algorithms is necessary to improve their resilience to external variables, so they can be effectively implemented in routine clinical settings. The ultimate goal is to fully automate the analysis of PET and CT medical images in the near future.

“While the performance of the algorithms in image data evaluation partly depends indeed on the quantity and quality of the data, the algorithm design is another crucial factor, for example with regard to the decisions made in the post-processing of the predicted segmentation,” explained KIT researcher Rainer Stiefelhagen.

40/80-Slice CT System
uCT 528
Diagnostic Ultrasound System
MS1700C
New
Cylindrical Water Scanning System
SunSCAN 3D
NMUS & MSK Ultrasound
InVisus Pro
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

MRI

view channel
Image: Comparison showing 3T and 7T scans for the same participant (Photo courtesy of P Simon Jones/University of Cambridge)

Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients

Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more

Ultrasound

view channel
Image: Oloid-shaped magnetic endoscope (Photo courtesy of STORM Lab/University of Leeds)

Tiny Magnetic Robot Takes 3D Scans from Deep Within Body

Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.