We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Model Automatically Segments MRI Images

By MedImaging International staff writers
Posted on 20 Feb 2025
Print article
Image: Example MRI scans in the training dataset (Photo courtesy of Radiology, DOI:10.1148/radiol.241613)
Image: Example MRI scans in the training dataset (Photo courtesy of Radiology, DOI:10.1148/radiol.241613)

Magnetic resonance imaging (MRI) plays a crucial role in providing detailed images of the human body, making it essential for diagnosing a wide range of medical conditions, from neurological disorders to musculoskeletal injuries. To interpret MRI images in depth, various anatomical structures such as organs, muscles, and bones are outlined or marked, a process known as segmentation. Traditionally, MRI images have been segmented manually, which is time-consuming, requires significant effort from radiologists, and is subject to variability between different readers. Automated systems offer the potential to reduce the radiologist's workload, minimize human errors, and deliver more consistent, reproducible results. Researchers have now developed and tested a robust artificial intelligence (AI) model capable of automatically segmenting major anatomical structures in MRI images, regardless of the sequence. In a study published in the journal Radiology, the AI model outperformed other publicly available tools.

Researchers at University Hospital Basel (Basel, Switzerland) developed an open-source automated segmentation tool called TotalSegmentator MRI, built on nnU-Net, a self-configuring framework that has set new benchmarks in medical image segmentation. This tool can adapt to new datasets with minimal user intervention, automatically adjusting its architecture, preprocessing, and training strategies to optimize performance. A similar model for CT (TotalSegmentator CT) is already in use by over 300,000 users worldwide, processing more than 100,000 CT images daily. In their retrospective study, the researchers trained TotalSegmentator MRI to provide sequence-independent segmentation of major anatomical structures using a randomly sampled dataset of 616 MRI and 527 CT exams.

The training set included segmentation data for 80 anatomical structures, which are commonly used for tasks such as measuring volume, characterizing diseases, planning surgeries, and conducting opportunistic screenings. To assess the model’s performance, Dice scores—metrics that measure the similarity between two sets of data—were calculated by comparing the predicted segmentations to the reference standards set by radiologists. The model performed well across all 80 structures, achieving a Dice score of 0.839 on an internal MRI test set. It significantly outperformed two publicly available segmentation models, with scores of 0.862, 0.838, and 0.560, respectively, and matched the performance of TotalSegmentator CT. Beyond research and AI product development, the researchers believe the model has the potential to be used clinically for treatment planning, monitoring disease progression, and conducting opportunistic screenings.

“We used a lot more data and segmented many more organs, bones and muscles than has been previously done. Our model also works across different MRI scanners and image acquisition settings,” said Jakob Wasserthal, Ph.D., Radiology Department research scientist at University Hospital Basel. “To our knowledge, our model is the only one that can automatically segment the highest number of structures on MRIs of any sequence. It’s a tool that helps improve radiologists’ work, makes measurements more precise and enables other measurements to be done that would have taken too much time to do manually.”

Ultrasound Imaging System
P12 Elite
New
X-Ray Illuminator
X-Ray Viewbox Illuminators
Digital Radiographic System
OMNERA 300M
Ultrasound Scanner
TBP-5533

Print article

Channels

Ultrasound

view channel
Image: Ultrasound detection of vascular changes post-RT corresponds to shifts in the immune microenvironment (Photo courtesy of Theranostics, DOI:10.7150/thno.97759)

Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy

While immunotherapy holds promise in the fight against triple-negative breast cancer, many patients fail to respond to current treatments. A major challenge has been predicting and monitoring how individual... Read more

Nuclear Medicine

view channel
Image: Autoradiography images showing binding of [18F]flortaucipir, [18F]MK6240, and [18F]PI2620 in prefrontal cortex, hippocampus, and cerebellum (A) and in whole-brain hemisphere (B) of control and AD brains (Photo courtesy of UFRGS)

Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s

In Alzheimer’s disease, tau tangles are closely linked to cognitive decline: the greater the number of tangles, the more severe the cognitive impairment. By measuring the amount of tau in brain tissue... Read more

General/Advanced Imaging

view channel
Image: The rugged and miniaturized CT scanner is being designed for use beyond a typical hospital setting (Photo courtesy of Micro-X)

World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC

Conventional CT scanners dominate the global medical imaging market, holding approximately 30% of the market share. These scanners are the current standard for various diagnostic applications, including... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.