We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Shock-Absorbing “Goo” Discovered in Bone

By MedImaging International staff writers
Posted on 09 Apr 2014
Print article
Image: The newly proposed layered structure of bone minerals (Photo courtesy of Cambridge University).
Image: The newly proposed layered structure of bone minerals (Photo courtesy of Cambridge University).
A combination of imaging techniques and computational modeling reveals that much of the mineral from which bone is made consists of “goo” trapped between tiny crystals that provides a flexibility that stops bones from shattering.

Researchers at the University of Cambridge (United Kingdom) and University College London (UCL; United Kingdom) uses a combination of multinuclear solid-state nuclear magnetic resonance (NMR), spectroscopy, powder X-ray diffraction, and first principles electronic structure calculations to propose a quantitative structure for double salt octacalcium phosphate citrate (OCP-citrate) bridging between layers of calcium phosphate mineral (such as in bone), in which citrate anions reside in a hydrated layer, bridging between the apatitic layers.

According to the model, citrate—a by-product of natural cell metabolism—is mixed with water to create a viscous fluid that is trapped between the nanoscale calcium phosphate crystals that form bones. This fluid allows enough movement (slippage), between the crystals so that bones remain flexible, and do not shatter under pressure. Bone tissue also has a protein mesh with holes where the calcium is deposited. In healthy tissue, the holes are very small, so that when the calcium is deposited, the citrate cannot escape and is trapped between crystals, creating the flexible layers of fluid and bone plates.

But as people age or suffer repeated bone trauma, the protein mesh becomes irreparably damaged, resulting in progressively larger holes that allow the citrate fluid to leak out. The calcium phosphate crystals can then fuse together into bigger and bigger clumps unimpeded by citrate, turning the bone inflexible, increasingly brittle, and more likely to shatter. According to the researchers the model can explain a number of known structural features of bone mineral, such the thin, plate-like morphology of mature bone mineral crystals and the presence of strongly bound water molecules, as well explain the root cause of osteoporosis. The study was published early online on March 21, 2014, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

“What we've shown is that a large part of bone mineral – possibly as much as half of it in fact – is made up of this goo, where citrate is binding like a gel between mineral crystals,” said lead author Melinda Duer, PhD, of the Cambridge department of chemistry and advanced imaging center. “The crystals stay in flat, plate-like shapes that have the facility to slide with respect to each other. Without citrate, all crystals in bone mineral would collapse together and become one big crystal and shatter.”

Related Links:

University of Cambridge
University College London


New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Radiology Software
DxWorks
1.5T MRI Scanner
MAGNETOM Amira
Portable Digital X-Ray System
Acuity PDR

Print article

Channels

MRI

view channel
Image: A new paradigm in radiation therapy planning aims to improve treatment outcomes for children with brain tumors (Photo courtesy of 123RF)

AI Software Uses MRI Scans to Automatically Segment Key Brain Structures for Improved Radiation Therapy Planning

Advances in radiation therapy have led to significant innovations in the treatment of brain tumors in children, focusing on precision to minimize damage to surrounding healthy brain tissue.... Read more

Ultrasound

view channel
Image: An example of a conventional ultrasound B-scan showing a suspicious breast lesion (left image) and with the new H-scan analysis showing the possibly malignant mass in color (right image) (Photo courtesy of Jihye Baek)

New Ultrasound Technologies Improve Diagnosis for Cancer, Liver Disease and Other Pathologies

Several diseases, including some cancers, can remain hidden or difficult to detect using traditional medical imaging. However, new technologies developed by researchers may soon enhance ultrasound's effectiveness... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Focused ultrasound therapy is poised to become an essential tool in every hospital, cancer care center and physician office (Photo courtesy of Arrayus)

Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer

Pancreatic cancer remains one of the most difficult cancers to treat due to its dense tissue structure, which limits the effectiveness of traditional drug therapies. Bracco Imaging S.A. (Milan, Italy)... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.