We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Double Targeting Ligands Identifies and Treats Prostate Cancer

By MedImaging International staff writers
Posted on 27 Sep 2017
Print article
Image: Targeted theranostic therapy using RPS-027 (Photo courtesy of JM Kelly / Weill Cornell Medicine).
Image: Targeted theranostic therapy using RPS-027 (Photo courtesy of JM Kelly / Weill Cornell Medicine).
A new study describes how a theranostic approach can precisely identify prostate cancer tumors for targeted radiotherapy (RT), while sparing healthy cells and reducing side effects.

Developed by researchers at Weill Cornell Medicine (New York, NY, USA), the new approach utilizes a single molecule designed to bind two proteins with differing affinities--prostate-specific membrane antigen (PSMA) and human serum albumin--in an effort to optimize specific tumor localization and enhance targeted alpha radionuclide therapy. The double targeting ligand, RPS-027, was tested in mouse models of human prostate cancer using the radiohalogen 211At.

The results, as assessed via positron emission tomography/computed tomography (PET/CT), showed high tumor uptake, reduced kidney uptake, and very favorable tissue distribution. When compared to existing ligands proposed for targeted therapy of prostate cancer, RPS-027 has tumor-to-tissue ratios that predicted a significant reduction in side effects during therapy, suggesting that dual targeting ligands could serve as the next-generation radiopharmaceuticals for targeted alpha therapy. The study was published in the September 2017 issue of The Journal of Nuclear Medicine.

“We believe that our double targeting ligands are the first PSMA ligands designed to make use of the blood pool as a ‘safe zone’ reservoir to protect sensitive organs and tissues from off-target effects of alpha irradiation and, simultaneously, to reduce kidney localization, while maintaining excellent tumor targeting,” said senior author Professor John Babich, PhD. “If our strategy can be applied successfully to other therapeutic targeting agents, we could expect an expansion in the use of targeted alpha therapy in the not-too-distant future.”

Targeted alpha-particle therapy is a radionuclide therapy that employs radioactive substances, which undergo alpha decay to treat diseased tissue at close proximity. It has the potential to provide highly targeted treatment, especially to microscopic tumor cells such as in leukemias, lymphomas, gliomas, melanoma, and peritoneal carcinomatosis. Appropriate radionuclides can be chemically bound to a targeting biomolecule, which carries the combined radiopharmaceutical to a specific treatment point.

Related Links:
Weill Cornell Medicine

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Gold Member
X-Ray QA Meter
T3 RG Pro
New
Ultrasound Imaging System
P12 Elite
Radiology Software
DxWorks

Print article

Channels

MRI

view channel
Image: MRI microscopy of mouse and human pancreas with respective histology demonstrating ability of DTI maps to identify pre-malignant lesions (Photo courtesy of Bilreiro C, et al. Investigative Radiology, 2024)

Pioneering MRI Technique Detects Pre-Malignant Pancreatic Lesions for The First Time

Pancreatic cancer is the leading cause of cancer-related fatalities. When the disease is localized, the five-year survival rate is 44%, but once it has spread, the rate drops to around 3%.... Read more

Ultrasound

view channel
Image: A transparent ultrasound transducer-based photoacoustic-ultrasound fusion probe, along with images of a rat’s rectum and a pig’s esophagus (Photo courtesy of POSTECH)

Transparent Ultrasound Transducer for Photoacoustic and Ultrasound Endoscopy to Improve Diagnostic Accuracy

Endoscopic ultrasound is a commonly used tool in gastroenterology for cancer diagnosis; however, it provides limited contrast in soft tissues and only offers structural information, which reduces its diagnostic... Read more

General/Advanced Imaging

view channel
Image: The results of the eight-view 3D CT reconstruction from a public dataset (Photo courtesy of Medical Physics, doi.org/10.1002/mp.12345)

AI Model Reconstructs Sparse-View 3D CT Scan With Much Lower X-Ray Dose

While 3D CT scans provide detailed images of internal structures, the 1,000 to 2,000 X-rays captured from different angles during scanning can increase cancer risk, especially for vulnerable patients.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.