We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New MRI Technologies Advance Image-Guided Radiotherapy

By MedImaging International staff writers
Posted on 01 May 2018
Print article
Image: MRIdian SmartVISION enhancements advance cancer RT (Photo courtesy of ViewRay).
Image: MRIdian SmartVISION enhancements advance cancer RT (Photo courtesy of ViewRay).
New magnetic resonance imaging (MRI) pulse sequences and imaging enhancements further improve the precision by which radiotherapy (RT) is delivered to treat cancer.

Designed for the ViewRay (Oakwood Village, OH, USA) MRIdian SmartVISION system and the MRIdian Linac RT system, the new T1w and T2w pulse sequences can deliver diagnostic-quality MRI during RT treatments by providing refined high-definition visualization and enhancing diagnostic contrast between cancerous and healthy tissues. Newly introduced diffusion weighted imaging (DWI) can also be used to distinguish between tumor and normal tissues, as well as to potentially assess and predict tumor response to RT.

Other enhancements to the SmartVISION system include a doubling of MRI speed (from four frames to eight frames per second), and twice the image resolution and signal-to-noise ratio (SNR), helping to providing brighter, more detailed anatomical images. The system also continuously detects the shape and location of tumors and organs-at-risk (OAR) in real-time, automatically turning RT beams on and off when positional changes occur.

The MRIdian Linac system integrates real-time SmartVISION data and RT delivery via a rotating gantry assembly that a houses a compact inline S-band 6 MV standing wave linear accelerator (linac), with side-coupled cavities and double focused multi-leaf collimator technology; magnetic and radiofrequency (RF) shielding technology to isolate linac and MRI systems from each other; and a 0.35 T split magnet for unrestricted beam path, volumetric, and multi-planar soft tissue imaging. The system also includes a patient couch with three degrees of freedom, two in-room couch control panels, and a laser positioning system to facilitate initial patient setup.

A control console, located just outside the treatment room, is paired to an operator console for MRI acquisition, patient positioning, dose prediction, re-optimization, and real-time tumor tracking. An additional planning station helps define structures and constraints for planning and re-optimizing treatments, with support for plan reviews via a database server that contains patient and machine data, as well as software for creating treatment plans and managing the treatment delivery process.

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Portable X-ray Unit
AJEX130HN
New
Digital X-Ray Detector Panel
Acuity G4
Radiation Therapy Treatment Software Application
Elekta ONE

Print article

Channels

MRI

view channel
Image: MRI microscopy of mouse and human pancreas with respective histology demonstrating ability of DTI maps to identify pre-malignant lesions (Photo courtesy of Bilreiro C, et al. Investigative Radiology, 2024)

Pioneering MRI Technique Detects Pre-Malignant Pancreatic Lesions for The First Time

Pancreatic cancer is the leading cause of cancer-related fatalities. When the disease is localized, the five-year survival rate is 44%, but once it has spread, the rate drops to around 3%.... Read more

Ultrasound

view channel
Image: A transparent ultrasound transducer-based photoacoustic-ultrasound fusion probe, along with images of a rat’s rectum and a pig’s esophagus (Photo courtesy of POSTECH)

Transparent Ultrasound Transducer for Photoacoustic and Ultrasound Endoscopy to Improve Diagnostic Accuracy

Endoscopic ultrasound is a commonly used tool in gastroenterology for cancer diagnosis; however, it provides limited contrast in soft tissues and only offers structural information, which reduces its diagnostic... Read more

General/Advanced Imaging

view channel
Image: The results of the eight-view 3D CT reconstruction from a public dataset (Photo courtesy of Medical Physics, doi.org/10.1002/mp.12345)

AI Model Reconstructs Sparse-View 3D CT Scan With Much Lower X-Ray Dose

While 3D CT scans provide detailed images of internal structures, the 1,000 to 2,000 X-rays captured from different angles during scanning can increase cancer risk, especially for vulnerable patients.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.