We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Radioactive Cement Safer for Spinal Tumor Treatment

By MedImaging International staff writers
Posted on 01 Mar 2021
Print article
Image: Professor Joyce Keyak, co-developer of Spine-Rad brachytherapy cement (Photo courtesy of UCI)
Image: Professor Joyce Keyak, co-developer of Spine-Rad brachytherapy cement (Photo courtesy of UCI)
Injecting brachytherapy cement into bone is a safer alternative to conventional radiation therapy (RT) for spinal tumors, according to a new study.

Developed by researchers at the University of California Irvine (UCI, USA) Spine-Rad brachytherapy cement includes radioactive isotopes that are dispersed evenly, so that radiologists don’t need to measure the total amount of radioactivity; the dose delivered to the tumor is independent of the volume of cement and the amount injected. To validate the function of the cement, the researchers conducted animal and computational studies to evaluate the short-term efficacy, safety, migration of radioactivity into blood, urine, or feces; and the radiation dose from phosphorus-32 (P-32) emissions to the spinal cord and soft tissues.

The results showed that at 17 weeks post-injection, physical examinations were all normal, and no activity was detected in blood, urine or feces. The researchers found no evidence of the P-32 isotope in the circulating blood, no changes in blood work related to radioactivity, no neurological deficits, and that radiation dose rates outside the injection site were minimal. The study was presented at the annual meeting of the Orthopaedic Research Society, held virtually during February 2021.

“Currently, multiple sessions of external beam radiation are used to treat cancer that has spread to the spine. But with the brachytherapy bone cement, a single injection can provide an equivalent, targeted tumor treatment with significantly less threat to the spinal cord and nerves,” said senior author and study presenter Professor Joyce Keyak, PhD. “You can have this procedure and be done with it. And you can do it when tumors are smaller to prevent further bone and spinal cord damage, while limiting the pain and side effects that patients often feel.”

Cancers that begin in the breast, prostate, lung, thyroid and kidney can spread to the vertebrae and weaken them while causing pain to the patient. Gamma radiation therapy to kill the tumor is toxic to bone, spinal cells and nerves, leading to paralysis. Because of this, RT is often delayed in patients with metastatic cancer as long as possible, leaving them in pain as tumors progress.

Related Links:
University of California Irvine

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Mobile Barrier
Tilted Mobile Leaded Barrier
New
X-ray Diagnostic System
FDX Visionary-A
New
Digital Radiographic System
OMNERA 300M

Print article

Channels

MRI

view channel
Image: MRI microscopy of mouse and human pancreas with respective histology demonstrating ability of DTI maps to identify pre-malignant lesions (Photo courtesy of Bilreiro C, et al. Investigative Radiology, 2024)

Pioneering MRI Technique Detects Pre-Malignant Pancreatic Lesions for The First Time

Pancreatic cancer is the leading cause of cancer-related fatalities. When the disease is localized, the five-year survival rate is 44%, but once it has spread, the rate drops to around 3%.... Read more

Ultrasound

view channel
Image: A transparent ultrasound transducer-based photoacoustic-ultrasound fusion probe, along with images of a rat’s rectum and a pig’s esophagus (Photo courtesy of POSTECH)

Transparent Ultrasound Transducer for Photoacoustic and Ultrasound Endoscopy to Improve Diagnostic Accuracy

Endoscopic ultrasound is a commonly used tool in gastroenterology for cancer diagnosis; however, it provides limited contrast in soft tissues and only offers structural information, which reduces its diagnostic... Read more

General/Advanced Imaging

view channel
Image: The results of the eight-view 3D CT reconstruction from a public dataset (Photo courtesy of Medical Physics, doi.org/10.1002/mp.12345)

AI Model Reconstructs Sparse-View 3D CT Scan With Much Lower X-Ray Dose

While 3D CT scans provide detailed images of internal structures, the 1,000 to 2,000 X-rays captured from different angles during scanning can increase cancer risk, especially for vulnerable patients.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.