We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Algorithm Predicts Prostate Cancer Recurrence in Patients Treated by Radiation Therapy

By MedImaging International staff writers
Posted on 02 Jan 2024
Print article
Image: The algorithm predicts prostate cancer recurrence 15 months faster in patients treated by radiation therapy (Photo courtesy of 123RF)
Image: The algorithm predicts prostate cancer recurrence 15 months faster in patients treated by radiation therapy (Photo courtesy of 123RF)

Radiation therapy is a prevalent treatment option for prostate cancer patients across various risk levels. Despite its effectiveness, 20% to 30% of patients will experience cancer recurrence within five years after treatment. Detecting this recurrence typically involves monitoring prostate-specific antigen (PSA) levels in the serum. However, this method can be slow, often delaying additional necessary treatments for those with returning tumors. Addressing this challenge, an international team of researchers has introduced a new patent-pending methodology and algorithm designed to predict the likelihood of prostate cancer recurrence post-radiation therapy.

Developed by specialists at Purdue University (West Lafayette, IN, USA), this innovative algorithm leverages data collected through routine patient monitoring. It is based on a patient-specific mechanistic model, which is continuously informed by periodic PSA measurements, a standard part of post-radiation monitoring for prostate cancer patients. The effectiveness of this approach was tested on historical data from 166 patients. For each patient, the algorithm's prediction of recurrence was compared with the actual occurrence as identified by traditional clinical practices. The findings were promising, indicating that the model-based predictors could flag potential relapses, on average, 14.8 months earlier than conventional methods. The researchers are now focusing on refining the model to benefit a broader range of patients.

“The PSA data is used in conjunction with the model to obtain patient-specific parameters that determine the PSA dynamics and serve as classifiers for recurrence,” said Hector Gomez, a professor at Purdue University. “In addition to recurrence identification, our model can be used for designing personalized PSA monitoring strategies. It can tell physicians the right time to investigate tumor recurrences and maximize the window of curability.”

“Our current model can be used only for patients who do not receive any treatment additional to radiation,” Gomez added. “Some patients receive radiation and hormone therapy simultaneously and cannot benefit from our method right now. We plan to extend the method to make it applicable also to patients who receive radiation and hormone therapy simultaneously.”

Related Links:
Purdue University

Portable Color Doppler Ultrasound System
S5000
Digital X-Ray Detector Panel
Acuity G4
New
Ultrasound Needle Guide
Ultra-Pro 3
Wall Fixtures
MRI SERIES

Print article

Channels

MRI

view channel
Image: Combining AI with bpMRI improves detection of clinically significant prostate cancer (Photo courtesy of 123RF)

Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer

Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more

Ultrasound

view channel
Image: The model trained on echocardiography, can identify liver disease in people without symptoms (Photo courtesy of 123RF)

Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms

Echocardiography is a diagnostic procedure that uses ultrasound to visualize the heart and its associated structures. This imaging test is commonly used as an early screening method when doctors suspect... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.