We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Ultrasound Monitor Delivers Blood Flow Data on Demand

By MedImaging International staff writers
Posted on 27 Mar 2019
Print article
Image: The EchoSure portable ultrasound system detects blood clots (Photo courtesy of Sonavex).
Image: The EchoSure portable ultrasound system detects blood clots (Photo courtesy of Sonavex).
A novel system combines 3D ultrasound imaging with advanced algorithms to automate visual and quantitative blood flow monitoring after surgery.

The Sonavex (Baltimore, MD, USA) EchoSure device is a portable ultrasound system designed for non-expert users designed to rapidly detect postoperative clot formation by automatically identifying loss of flow through blood vessels. For example, in the case of reconstructive surgery, it could detect a reduction in blood flow to tissues before symptoms appear. Echosure is designed to work with the EchoMark implant, which serves as a marker for soft tissue sites during surgery. As a result of its ultrasonic reflective properties, doctors can precisely visualized the area during follow-up evaluations.

EchoSure uses deep learning algorithms to derive where the ultrasound beam is coming from, and can then compute the volumetric flow rate through the vessels of interest so it can quantify the blood flow rate over time. In addition to the device itself, there is also a mobile app so that surgeons can monitor their patients remotely. This allows for more frequent monitoring, and more chances for intervention, as surgeons and nurses no longer need a trained sonographer to read the ultrasound and understand the blood flow data.

“For decades, the surgical community has sought a simple, fast and non-invasive way to accurately quantify blood flow after microvascular and vascular surgeries,” said microvascular surgeon Devin O’Brien Coon, MD, chief medical officer and president of Sonavex. “Putting ultrasound technology in the hands of bedside nurses for the first time may enable detection of vascular compromise earlier than clinical observation alone, providing opportunities for more rapid intervention and improved patient outcomes.”

“The key goal is to be able to detect the problems associated with microvascular and vascular surgeries with high risk of post-op complications. A complication of microvascular surgery is necrosis as a result of reduced blood flow and oxygen,” concluded David Narrow, CEO of Sonavex. “The gold standard for reconstructive surgery is to do a clinical exam of the reconstructive tissue to assess whether it’s starting to get colder, or bluer, or starting to appear to be in its early stages of necrosis. It’s basically waiting for the tissue to be almost dead to tell if there is a problem.”

Doppler ultrasound can detect moving cells or structures and measure their direction and speed of movement based on the Doppler effect, which evaluates movement by measuring changes in frequency of the echoes reflected. In many instances, Doppler ultrasound has replaced x-ray angiography, as it permits real-time viewing of blood flow that cannot be obtained by other methods.

Related Links:
Sonavex

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Ultrasound Imaging System
P12 Elite
New
Imaging Table
CFPM201
Ultrasound Color LCD
U156W

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.