We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Approach Combining Ultrasound Imaging and AI Doubles Accuracy at Detecting Fetal Heart Flaws in the Womb

By MedImaging International staff writers
Posted on 28 May 2021
Print article
Image: An ultrasound image shows a normal fetus with relevant heart structures precisely highlighted (Photo courtesy of Rima Arnaout)
Image: An ultrasound image shows a normal fetus with relevant heart structures precisely highlighted (Photo courtesy of Rima Arnaout)
Researchers have found a way to double doctors’ accuracy in detecting the vast majority of complex fetal heart defects in utero by combining routine ultrasound imaging with machine-learning computer tools.

The team of researchers from University of California, San Francisco (UCSF; San Francisco, CA, USA) trained a group of machine-learning models to mimic the tasks that clinicians follow in diagnosing complex congenital heart disease (CHD). Worldwide, humans detect as few as 30% to 50% of these conditions before birth. However, the combination of human-performed ultrasound and machine analysis allowed the researchers to detect 95% of CHD in their test dataset. Diagnosis of fetal heart defects, in particular, can improve newborn outcomes and enable further research on in utero therapies, the researchers said.

The UCSF team trained the machine tools to mimic clinicians’ work in three steps. First, they utilized neural networks to find five views of the heart that are important for diagnosis. Then, they again used neural networks to decide whether each of these views was normal or not. Then, a third algorithm combined the results of the first two steps to give a final result of whether the fetal heart was normal or abnormal.

“We hope this work will revolutionize screening for these birth defects,” said UCSF cardiologist Rima Arnaout, MD, a member of the UCSF Bakar Computational Health Sciences Institute, the UCSF Center for Intelligent Imaging, and a Chan Zuckerberg Biohub Intercampus Research Award Investigator. “Our goal is to help forge a path toward using machine learning to solve diagnostic challenges for the many diseases where ultrasound is used in screening and diagnosis.”

Related Links:
University of California, San Francisco

Digital X-Ray Detector Panel
Acuity G4
New
Ultrasonic Pocket Doppler
SD1
Multi-Use Ultrasound Table
Clinton
New
Mobile Cath Lab
Photon F65/F80

Print article

Channels

Nuclear Medicine

view channel
Image: A repurposed ALS drug has become an imaging probe to help diagnose neurodegeneration (Photo courtesy of St. Jude Children’s Research Hospital)

Innovative PET Imaging Technique to Help Diagnose Neurodegeneration

Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease, are often diagnosed only after physical symptoms appear, by which time treatment may no longer be effective.... Read more

General/Advanced Imaging

view channel
Image: Whole-brain PACT system and in vivo morphological imaging (Photo courtesy of Advanced Science)

Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring

Stroke is the second leading cause of death globally, claiming millions of lives each year. Ischemic stroke, in particular, occurs when a blood vessel that supplies blood to the brain becomes blocked.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.