We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Ultrasound-Activated Hydrogel Could Revolutionize Drug Delivery for Medical Applications

By MedImaging International staff writers
Posted on 30 Sep 2024
Print article
Image: The composite hydrogel enables sustained and consistent drug release, triggered by ultrasound (Photo courtesy of Journal of Controlled Release; DOI: 10.1016/j.jconrel.2024.08.001)
Image: The composite hydrogel enables sustained and consistent drug release, triggered by ultrasound (Photo courtesy of Journal of Controlled Release; DOI: 10.1016/j.jconrel.2024.08.001)

Researchers have created a composite hydrogel that enables sustained and consistent drug release, triggered by ultrasound. This breakthrough could transform drug delivery for numerous medical applications where maintaining constant drug levels is essential for optimal therapeutic outcomes.

Developed by researchers at Michigan Medicine (Ann Arbor, MI, USA), the composite is known as an acoustically responsive scaffold and utilizes a fibrin hydrogel matrix. Upon exposure to ultrasound, an emulsion embedded in the hydrogel vaporizes into bubbles, releasing the encapsulated drug. While current drug delivery systems, such as osmotic pumps, can provide zero-order release—delivering a constant drug dose over time—they often have limitations that this fibrin hydrogel can address. The ability to control drug release through ultrasound allows for sustained zero-order release, providing a consistent drug level over an extended period. This approach could improve treatment effectiveness and reduce side effects associated with fluctuating drug concentrations. A key advantage is the use of fibrin, a biocompatible material that naturally degrades in the body, eliminating the need for surgical removal after treatment, which is sometimes required with other implantable systems.

In the study published in the October 2024 issue of the Journal of Controlled Release, the researchers developed stepwise equations to describe the multi-phase release behavior of the acoustically responsive scaffolds. This process includes an initial rapid release triggered by ultrasound, followed by a steady, zero-order release phase. These equations offer a new framework for designing and optimizing ultrasound-triggered drug delivery systems. The research team had previously used these scaffolds to promote blood vessel growth. Expanding this technology to drug delivery brings several benefits, such as on-demand release, personalized treatment plans, and non-invasive dose adjustments. The team is now working on acoustically responsive scaffolds that can sequentially deliver multiple growth factors, potentially paving the way for more advanced applications in tissue engineering and regenerative medicine.

“Having a mathematical model that accurately describes the release process from the ARS is crucial for ultimately personalizing treatment,” said Mario L. Fabiilli, Ph.D., principal investigator within the Ultrasound Laboratory and senior author on the paper. “In the future, these equations will empower us to precisely fine tune the drug dose non-invasively to meet individual patient needs.”

Related Links:
Michigan Medicine

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
DRF DR & Remote Fluoroscopy Solution
CombiDiagnost R90
New
X-ray Diagnostic System
FDX Visionary-A
Portable X-ray Unit
AJEX130HN

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Dr. Amar Kishan notes that MRI-guided approach enables the use of significantly narrower planning margins when delivering radiation (Photo courtesy of UCLA)

MRI-Guided Radiation Therapy Reduces Long-Term Side Effects in Prostate Cancer Patients

Stereotactic body radiotherapy (SBRT) is a standard treatment for localized prostate cancer. However, the side effects of this treatment can be severe and long-lasting, impacting a patient’s urinary, bowel,... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.