We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Combining Artificial Intelligence with 30 Second MRI Scan Predicts Health of Placenta

By MedImaging International staff writers
Posted on 27 Aug 2021
Researchers have proposed a machine learning method that predicts the health of the placenta from a 30 second MRI scan.

The algorithm developed by researchers from the School of Biomedical Engineering & Imaging Sciences at King's College London (London, UK) models the normal distribution of placental tissue properties which can be used to screen for deviations from normal placental ageing and signs of pregnancy complications. The researchers use this method to detect pre-eclampsia, a condition that affects 4 to 7% of pregnancies with significant mortality and morbidity for both mother and child. The 30 second scan together with the automatic pipeline can easily be included in any fetal MRI examination and allows obtaining additional, previously not available information leading to better treatment and information.

According to the researchers, detecting pre-eclampsia is essential to achieve optimal monitoring and thus the best possible outcome. The method is most sensitive early in the second half of pregnancy which is also the typical time of onset of pre-eclampsia. This allows early detection and monitoring of this complication. The machine learning pipeline automates manual segmentation of the placenta, which can take up to one hour per case, and uses data-driven models to define normal intervals of tissue properties within the placenta. This new technique is fast and removes any laborious steps. At the same time, it uses human-inspectable and interpretable intermediate representations of the data, keeping clinicians in the loop and allowing optional corrections and alleviating issues related to black-box algorithms for clinical decision making. Also, incorporating the uncertainty associated with the data in the model improves the method’s ability to assign lower health scores to high-risk placentas (AUC ROC) from 69% to 95%.

“This method develops a clinical marker and automates its extraction which would otherwise be prohibitively time-consuming in clinical practice,” said Dr. Maximilian Pietsch, Research Associate, School of Biomedical Engineering & Imaging Sciences. “The validation on an independent clinical cohort with MRI data acquired at a different field strength shows that it can be a valuable clinical tool.”

Related Links:
King's College London


Diagnostic Ultrasound System
MS1700C
Mobile Cath Lab
Photon F65/F80
Portable Color Doppler Ultrasound Scanner
DCU10
Radiation Therapy Treatment Software Application
Elekta ONE
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.