We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI-Enhanced MRI Improves Diagnosis of Brain Disorders

By MedImaging International staff writers
Posted on 15 Oct 2024

At the crossroads of AI and medical science, there is an increasing interest in leveraging machine learning to improve imaging data obtained through magnetic resonance imaging (MRI) technology. Recent research indicates that ultra-high-field MRI at 7 Tesla (7T) offers significantly greater resolution and may provide clinical benefits over high-field MRI at 3 Tesla (3T) in delineating anatomical structures critical for identifying and monitoring pathological tissue, particularly within the brain. Researchers have now created a machine learning algorithm aimed at enhancing 3T MRIs by synthesizing images that resemble those obtained from 7T MRIs. Their model improves the fidelity of pathological tissue visualization for deeper clinical insights and marks a new advancement in assessing the clinical applications of synthetic 7T MRI models.

A research team at UCSF Health (San Francisco, CA, USA) gathered imaging data from patients diagnosed with mild traumatic brain injury (TBI). They designed and trained three neural network models for image enhancement and 3D image segmentation using the synthetic 7T MRIs generated from standard 3T MRIs. The images produced by the new models provided enhanced visualization of pathological tissue in patients with mild TBI. They chose a specific region with white matter lesions and microbleeds in subcortical areas for comparison. The analysis revealed that pathological tissue was more easily identifiable in the synthesized 7T images, as evidenced by the clearer separation of adjacent lesions and sharper contours of subcortical microbleeds.

Moreover, the synthesized 7T images captured a wider range of features within white matter lesions. These findings also underscore the potential of this technology to enhance diagnostic accuracy in neurodegenerative conditions such as multiple sclerosis. Although synthesization techniques that utilize machine learning frameworks demonstrate impressive performance, their implementation in clinical environments will require thorough validation. The researchers assert that future efforts should involve comprehensive clinical evaluations of the model findings, clinical assessments of model-generated images, and quantification of uncertainties within the model.

“Our paper introduces a machine-learning model to synthesize high-quality MRIs from lower-quality images. We demonstrate how this AI system improves the visualization and identification of brain abnormalities captured by MRIs in Traumatic Brain Injury.” said senior study author Reza Abbasi-Asl, PhD, UCSF Assistant Professor of Neurology. “Our findings highlight the promise of AI and machine learning to improve the quality of medical images captured by less advanced imaging systems.”

Related Links:
UCSF Health

X-Ray Illuminator
X-Ray Viewbox Illuminators
Silver Member
X-Ray QA Meter
T3 AD Pro
X-ray Diagnostic System
FDX Visionary-A
New
Mobile Cath Lab
Photon F65/F80
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.