We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Risk Profiling Used with Mammography Diagnosis Should Reduce Number of Missed Tumors

By MedImaging International staff writers
Posted on 07 Jul 2014
Print article
A new approach to reading mammograms that takes into account a woman’s health risk profile would reduce the number of tumors missed, and in addition, decrease the number of false-positive findings, according to recent research.

The study’s findings were presented at a conference of the Institute for Operations Research and the Management Sciences (INFORMS; Catonsville, MD, USA), which took place June 16-18, 2014, at Georgetown University in Washington DC (USA). Mehmet U.S. Ayvaci, from the University of Texas Dallas (USA) presented his research group’s findings about the role of risk profiling in the interpretation of mammograms at Advances in Decision Analysis, a conference sponsored by the INFORMS Decision Analysis Society (DAS). Formed in 1980 with 1,000 current members, DAS supports the development and use of logical methods for improving decision-making in public and private enterprise.

The researchers found that providing radiologists with the patient’s risk profile information for breast cancer at the most advantageous time when examining the mammogram, together with statistical weighting based on profile risk, reduces false-negative results by 3.7%, thereby forewarning women whose cancer would have gone undiagnosed at an early stage, when treatment is most effective. It also reduces false-positive findings by 3.23%, thereby slashing superfluous healthcare costs and sparing patients’ needless worry.

Risk factors include family history, reproductive history, age, and ethnicity, and others forming the risk profile information. The researchers examined the complicated questions of whether providing risk profile data about women being screened for cancer biases radiologists and, if there is bias, whether this bias actually helps make readings more effective.

Historically, available clinical evidence has been inconclusive on the use of profile information when interpreting mammograms. One position is that profile information helps radiologists make better decisions and should be employed when reading mammograms. A contradictory position holds that profile information may bias the radiologists. However, whether bias always causes harm is unclear.

The investigators searched profile information and potential bias in mammography interpretation using a decision science technique called linear opinion pooling, which assigns weights to better aggregate probability estimates. They analyzed the decision performance of three groups: (1) a mammogram-only reading, with no risk profile information about the patient; (2) an unbiased reading, in which radiologists consult the risk profile after examining the mammogram; and (3) lastly, biased or “influenced” readings, in which radiologists consult a woman's risk profile as they examine the mammogram. Then they examined the conditions in which profile information could help improve biopsy decisions.

Numeric analysis using a clinical dataset from the Breast Cancer Surveillance Consortium revealed that use of profile data with an appropriate weight could reduce the false-positives and the number of missed tumors when compared to cases where profile information was not examined.

Related Links:

Institute for Operations Research and the Management Sciences
University of Texas Dallas


New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
X-ray Diagnostic System
FDX Visionary-A
New
Doppler String Phantom
CIRS Model 043A
Portable Color Doppler Ultrasound Scanner
DCU10

Print article
Radcal

Channels

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.