We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Release of X-Ray Database to Boost AI Research

By MedImaging International staff writers
Posted on 16 Oct 2017
Print article
Image: A normal chest x-ray (Photo courtesy of Wikipedia).
Image: A normal chest x-ray (Photo courtesy of Wikipedia).
The U.S. National Institutes of Health (NIH) (Bethesda, MD, USA) recently made available a massive database of chest X-rays, marking a huge step toward integrating artificial intelligence (AI) mechanisms into clinical practice.

The release of over 100,000 anonymized chest X-ray images and their corresponding data to the scientific community by the NIH Clinical Center will allow researchers across the world to freely access the datasets and improve their ability to teach computers how to detect and diagnose disease. The AI mechanism can ultimately allow clinicians to make better diagnostic decisions for their patients.

Reading and diagnosing chest X-ray images is a complex reasoning problem which usually careful observation and knowledge of anatomical principles, physiology and pathology. This makes it more difficult to develop a consistent and automated technique for reading chest X-ray images while simultaneously considering all common thoracic diseases. The NIH has compiled the dataset of scans from over 30,000 patients, including several with advanced lung disease, after rigorous screening to remove all personally identifiable information. Academic and research institutions will be able to use this free dataset to teach a computer to read and process extremely large amounts of scans, for confirming the results found by radiologists and potentially identify other findings which may have been overlooked.

Additionally, the advanced computer technology may also be able to help identify slow changes occurring over the course of multiple chest X-rays that might otherwise be overlooked; benefit patients in developing countries who do not have access to radiologists to read their chest X-rays, and create a virtual radiology resident that can later be taught to read more complex images such as CT and MRI in the future.

In line with its ongoing commitment to data sharing, the NIH research hospital expects to continue adding a large dataset of CT scans to be made available over the coming months.

Related Links:
U.S. National Institutes of Health

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Diagnostic Ultrasound System
MS1700C
New
Doppler String Phantom
CIRS Model 043A
New
3T MRI Scanner
MAGNETOM Cima.X

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.