We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Software to Help Early Detection of Lung Cancer

By MedImaging International staff writers
Posted on 24 Oct 2017
Print article
A team of experts in lung cancer, machine learning and medical technology product development has come together to address a huge and growing problem in lung cancer diagnosis, the management of patients presenting with indeterminate pulmonary nodules. The researchers have developed the world’s first image-based decision support software for improving patient management and reducing unnecessary follow-up procedures.

EIT Health LUCINDA (Early Lung Cancer Diagnosis with Artificial Intelligence and Big Data) is a consortium of leading clinicians & hospitals in the UK, the Netherlands and Germany (Oxford University Hospital, the University Medical Center Groningen, Heidelberg University Hospital & ThoraxKlinik Heidelberg, and the University of Oxford) and Optellum (Oxford, UK), a high-tech start up. Optellum is developing the world’s first automated patient management and image-based risk stratification software for incidental and screen-detected nodules in Computed Tomography (CT). By using deep learning, the company aims to make significant improvements in lung cancer diagnosis and patient management from the current standard of care.

Early detection of lung cancer by a chest CT scan can dramatically improve survival rates by identifying pulmonary nodules, small opacities in the lung, typically less than 1 cm in size. Up to 30% of all patients scanned have such small nodules, although the vast majority is harmless and will not cause any problems to the patient. Unfortunately, radiologists find it difficult to determine if a nodule is cancerous, resulting in an indeterminate diagnosis, which requires up to two year follow-up imaging for monitoring growth. In some cases, additional biopsies and surgeries need to be performed in order to investigate nodules, which ultimately prove to be benign. Such additional procedures increase patient stress, create a risk of complications and burden healthcare system resources.

EIT Health’s expert-level decision support software can improve a doctor’s ability to correctly diagnose lung nodules. The software utilizes state-of-the-art deep learning to provide an objective risk score of nodule malignancy learned from a database of thousands of examples with known ground-truth diagnoses. The output enables clinicians to confidently stratify lung nodule patients earlier, potentially on the basis of only one or two scans.

“Our project consortium, comprising Europe’s leading institutes in lung cancer screening in Groningen and Heidelberg, along with experts in healthcare machine learning at Optellum and Oxford, is uniquely positioned to tackle this critically important problem,” said Prof. Gleeson (Oxford), co-author of the 2015 British Thoracic Society guidelines for the management of pulmonary nodules. “We believe that this system will improve patient care and reduce the burden of managing indeterminate lung nodules in both incidental and screening settings.”

Related Links:
Optellum

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Digital Radiographic System
OMNERA 300M
New
40/80-Slice CT System
uCT 528
NMUS & MSK Ultrasound
InVisus Pro

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.