We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI-Powered Technology Identifies Abnormalities in CT Scans

By MedImaging International staff writers
Posted on 30 Apr 2018
Print article
Image: The new AI-powered technology can accurately identify bleeds, fractures and other critical abnormalities in head CT scans and generate reports (Photo courtesy of Qure.ai).
Image: The new AI-powered technology can accurately identify bleeds, fractures and other critical abnormalities in head CT scans and generate reports (Photo courtesy of Qure.ai).
A new artificial intelligence (AI)-powered technology can accurately identify bleeds, fractures and other critical abnormalities in head CT scans, and can automatically generate abnormality reports. These automated reports are a first-to-market capability in the AI and radiology category, helping radiologists and hospitals prioritize care, make smarter and faster diagnoses and reduce costs.

The new head CT scan technology has been launched by Qure.ai (Mumbai, India), a healthcare AI startup, which focuses on making healthcare affordable and accessible using the power of AI. Its deep neural networks can understand and interpret medical images accurately and enable machines to perform routine diagnostics, thus improving healthcare outcomes and costs. Until now, Qure.ai has delivered AI-powered chest, abdomen and musculoskeletal image interpretation technology. The company has now launched capabilities for head and brain CT scans for the first-time.

Qure.ai trained the new AI using a collection of 313,318 anonymized head CT scans, along with their corresponding clinical reports. Out of these, 21,095 scans were used to validate the AI's algorithms. Finally, the AI was clinically validated on 491 CT scans, with the results compared against a panel of three senior radiologists. The validation study found that Qure.ai's AI to be more than 95% accurate in identifying abnormalities.

The company has also made a dataset of 491 AI-interpreted head CT scans, as well as the corresponding interpretations from the three radiologists, publicly available for download. This dataset is from the Centre for Advanced Research in Imaging, Neurosciences and Genomics, and includes both outpatient and in-patient scans from seven centers.

"Qure.ai's new head CT scan technology rapidly screens scans in under 10 seconds to detect, localize and quantify abnormalities, as well as assess their severity," said Prashant Warier, Co-Founder and CEO, Qure.ai. "This enables patient prioritization and the appropriate clinical intervention."

"We are delivering near-radiologist accurate AI to support radiologists, physicians and healthcare providers," said Sasank Chilamkurthy, AI Scientist, Qure.ai. "Our deep learning algorithms can accurately detect and highlight head CT scan abnormalities, reducing the chances of missing a diagnosis. Our technology can also localize the brain regions affected and quantify the bleed regions in a fully-automated report."

Related Links:
Qure.ai

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Portable Color Doppler Ultrasound System
S5000
Ultrasound Color LCD
U156W
New
Doppler String Phantom
CIRS Model 043A

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.