We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Machine-Learning Scans Accurately Predict Undiagnosed Dementia

By MedImaging International staff writers
Posted on 29 Aug 2018
Print article
Image: A brain scan showing vascular dementia (Photo courtesy of Radiopaedia).
Image: A brain scan showing vascular dementia (Photo courtesy of Radiopaedia).
Researchers from the University of Plymouth (Devon, UK) have developed a new machine-learning model that scanned routinely collected National Health Service {(NHS) England, UK)} data in a study and predicted undiagnosed dementia in primary care with high accuracy.

For the study, the researchers used Read-encoded data from 18 consenting GP surgeries across Devon, UK, for 26,483 patients aged over 65 years. The Read codes is a thesaurus of clinical terms used to summarize clinical and administrative data for UK GPs and were assessed on whether they can contribute to dementia risk, along with other factors such as weight and blood pressure. The researchers used the codes to train the machine-learning classification model to identify patients with possible underlying dementia. The study found that the model can detect people with underlying dementia with an accuracy of 84%, suggesting that it could significantly reduce the number of people living with undiagnosed dementia from the current estimated figure of 50% to 8%.

“Machine learning is an application of artificial intelligence where systems automatically learn and improve from experience without being explicitly programmed,” said Emmanuel Ifeachor, Principal Investigator Professor from the School of Computing Electronics and Mathematics at the University of Plymouth. “It’s already being used for many applications throughout healthcare such as medical imaging, but using it for patient data has not been done in quite this way before. The methodology is promising and, if successfully developed and deployed, may help to increase dementia diagnosis in primary care.”

“Dementia is a disease with so many different contributing factors, and it can be quite difficult to pinpoint or predict,” said Dr. Camille Carroll, Consultant Neurologist at University Hospitals Plymouth NHS Trust and Researcher in the Institute of Translational and Stratified Medicine at the University of Plymouth. “There is strong epidemiological evidence that a number of cardiovascular and lifestyle factors such as hypertension; high cholesterol; diabetes; obesity; stroke; atrial fibrillation; smoking; and reduced cognitive, physical, or social activities can predict the risk of dementia in later life, but no studies have taken place that allow us to see this quickly. So having tools that can take a vast amount of data, and automatically identify patients with possible dementia, to facilitate targeted screening, could potentially be very useful and help improve diagnosis rates.”

Related Links:
University of Plymouth
National Health Service

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Ultra-Flat DR Detector
meX+1717SCC
New
3T MRI Scanner
MAGNETOM Cima.X
New
Doppler String Phantom
CIRS Model 043A

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.