We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI System Accurately Detects Lung Cancer in CT Scans

By MedImaging International staff writers
Posted on 05 Sep 2018
Print article
Image: Assistant Professor Ulas Bagci leads the group of engineers at the University of Central Florida that have taught a computer how to detect tiny specks of lung cancer in CT scans, which radiologists often have a difficult time identifying. The artificial intelligence system is about 95 percent accurate, compared to 65 percent when done by human eyes, the team said (Photo courtesy of the University of Central Florida, Karen Norum).
Image: Assistant Professor Ulas Bagci leads the group of engineers at the University of Central Florida that have taught a computer how to detect tiny specks of lung cancer in CT scans, which radiologists often have a difficult time identifying. The artificial intelligence system is about 95 percent accurate, compared to 65 percent when done by human eyes, the team said (Photo courtesy of the University of Central Florida, Karen Norum).
Engineers from the University of Central Florida's Computer Vision Research Center (Orlando, FL, USA) have developed an artificial intelligence (AI) system which can detect tiny specks of lung cancer in CT scans. Radiologists find it difficult to identify such tiny tumors and have an accuracy of 65%, while the AI system has an accuracy of about 95%, according to the engineers.

In order to teach the computer to look for the tumors, the scientists fed more than 1,000 CT scans into the software and used the same kind of algorithms, which are utilized by facial-recognition software to scan thousands of faces in search of a particular pattern and find a match. The computer was taught to ignore other tissue, nerves and other masses found in the CT scans and analyze lung tissues.

"We used the brain as a model to create our system," said Rodney LaLonde, a doctoral candidate. "You know how connections between neurons in the brain strengthen during development and learn? We used that blueprint, if you will, to help our system understand how to look for patterns in the CT scans and teach itself how to find these tiny tumors."

The researchers are now fine-tuning the AI's ability to identify cancerous versus benign tumors and also study if they can develop another AI system to help identify or predict brain disorders.

"I believe this will have a very big impact," said engineering assistant professor Ulas Bagci who led the group of researchers at the center, which focuses on AI with potential medical applications. "Lung cancer is the number one cancer killer in the United States and if detected in late stages, the survival rate is only 17%. By finding ways to help identify earlier, I think we can help increase survival rates."

Related Links:
University of Central Florida Computer Vision Research Center

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Digital Radiographic System
OMNERA 300M
New
Gold Member
X-Ray QA Meter
T3 RG Pro
New
X-ray Diagnostic System
FDX Visionary-A

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.