We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Largest-Ever Open-Source Dataset Released to Speed Up MRIs Using AI

By MedImaging International staff writers
Posted on 18 Dec 2018
Print article
Image: NYU School of Medicine Department of Radiology chair, Michael Recht, MD; Daniel Sodickson, MD, PhD, vice chair for research and director of the Center for Advanced Imaging Innovation and Research; and Yvonne Lui, MD, director of artificial intelligence, watch an MRI exam take place with at NYU Langone Health in New York in August 2018.
Image: NYU School of Medicine Department of Radiology chair, Michael Recht, MD; Daniel Sodickson, MD, PhD, vice chair for research and director of the Center for Advanced Imaging Innovation and Research; and Yvonne Lui, MD, director of artificial intelligence, watch an MRI exam take place with at NYU Langone Health in New York in August 2018.
The NYU School of Medicine’s (New York, NY, USA) Department of Radiology is releasing the first large-scale MRI dataset of its kind as part of fastMRI, a collaborative effort with Facebook AI Research (New York, NY, USA) to speed up MRI scans with artificial intelligence (AI).

The collaboration is aimed at sharing open source tools and spurring the development of AI systems to make MRI scans 10 times faster. The collaboration will promote research reproducibility, provide consistent evaluation methods, and empower the larger community of AI and medical imaging scientists.

Using AI, researchers believe it will be possible to capture less data, and therefore image faster, while preserving or even enhancing the rich information contained in MR images. Leaders of the study say that, if successful, fastMRI could benefit a wide range of people who may have difficulty tolerating lengthy scans, including young children, elderly patients, and claustrophobic individual. It could also decrease the need for anesthesia or sedation. Additionally, the project could expand access to this key diagnostic tool, particularly in areas where there is a shortage of MRI scanners and patients face long wait-times for their scans.

The initial dataset release includes more than 1.5 million anonymous MR images of the knee, drawn from 10,000 scans, in addition to raw measurement data from nearly 1,600 scans. While other sets of radiological images have been released previously, this dataset represents the largest public release of raw MRI data to date. The first phase of the project will involve data from knee MRI scans, but future releases will include data from liver and brain scans. The joint team will also provide a suite of tools, including baseline metrics to compare results, and a leaderboard to keep track of progress as part of an organized challenge to be announced in the near future.

"fastMRI not only could have an important impact in the medical field, it's also an interesting research challenge that will help to advance the field of AI," said Larry Zitnick, Research Manager, Facebook AI Research. "To be medically useful, our AI-reconstructed images need to be more than just good-looking, they must also be accurate representations of the ground-truth, even though they're created from significantly less data. The dataset NYU Langone is releasing and the baseline models we've open-sourced will enable other researchers to join us in working on this challenging problem, and we believe this open approach will bring about positive results more quickly."

“This collaboration focuses on applying the strengths of machine learning to reconstruct high-value images in new ways. Rather than using existing images to train AI algorithms, we will radically change the way medical images are acquired in the first place,” said Daniel Sodickson, MD, PhD, professor of radiology and neuroscience and physiology and director of CAIR. “Our aim is not merely enhanced data mining with AI, but rather creating new capabilities for medical visualization, to benefit human health.”

Related Links:
NYU School of Medicine
Facebook AI Research

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
X-ray Diagnostic System
FDX Visionary-A
New
Gold Member
X-Ray QA Meter
T3 RG Pro
Portable X-ray Unit
AJEX130HN

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.