We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Software Predicts Ovarian Cancer Survival Rates From CT Scans

By MedImaging International staff writers
Posted on 01 Mar 2019
Print article
Researchers from the Imperial College London (London, England) and the University of Melbourne (Melbourne, Australia) have created a new machine learning software that can forecast the survival rates and response to treatments of patients with ovarian cancer. The artificial intelligence (AI) software can predict the prognosis of patients with ovarian cancer more accurately than the current methods and can also predict the most effective treatment for patients following diagnosis.

In their study, the researchers used a mathematical software tool called TEXLab to identify the aggressiveness of tumors in CT scans and tissue samples from 364 women with ovarian cancer between 2004 and 2015. The software examined four biological characteristics of the tumors that significantly influence overall survival - structure, shape, size and genetic makeup - to assess the patients’ prognosis. The patients were then given a score known as Radiomic Prognostic Vector (RPV), which indicates how severe the disease is, ranging from mild to severe.

When the researchers compared the results with blood tests and current prognostic scores used by doctors to estimate survival, they found the software to be four times more accurate at predicting deaths from ovarian cancer than the standard methods. The researchers also found that 5% of patients with high RPV scores had a survival rate of less than two years. According to the researchers, the technology could be used to identify patients who are unlikely to respond to standard treatments and offer them alternative treatments. They now plan to carry out a larger study to see how accurately the software can predict the outcomes of surgery and/or drug therapies for individual patients.

“The long-term survival rates for patients with advanced ovarian cancer are poor despite the advancements made in cancer treatments. There is an urgent need to find new ways to treat the disease,” said Professor Eric Aboagye, lead author and Professor of Cancer Pharmacology and Molecular Imaging, at Imperial College London. “Our technology is able to give clinicians more detailed and accurate information on the how patients are likely to respond to different treatments, which could enable them to make better and more targeted treatment decisions.”

“Artificial intelligence has the potential to transform the way healthcare is delivered and improve patient outcomes,” added Professor Andrea Rockall, co-author and Honorary Consultant Radiologist, at Imperial College Healthcare NHS Trust. “Our software is an example of this and we hope that it can be used as a tool to help clinicians with how to best manage and treat patients with ovarian cancer.”

Related Links:
Imperial College London
University of Melbourne

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Gold Member
X-Ray QA Meter
T3 RG Pro
Radiology Software
DxWorks
NMUS & MSK Ultrasound
InVisus Pro

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.