We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New AI System Performs As Well As Radiologists in Detecting Prostate Cancer

By MedImaging International staff writers
Posted on 24 Apr 2019
Print article
Researchers from the University of California {(UCLA), Los Angeles, CA, USA} have developed a new artificial intelligence (AI) system to help radiologists improve their ability to diagnose prostate cancer. The system, called FocalNet, helps identify and predict the aggressiveness of the disease evaluating magnetic resonance imaging (MRI) scans with almost the same level of accuracy as experienced radiologists.

Typically, radiologists use MRI to detect and assess the aggressiveness of malignant prostate tumors. However, this requires practicing on thousands of scans to learn how to accurately determine whether a tumor is cancerous or benign and to accurately estimate the grade of the cancer. Additionally, many hospitals lack the resources to implement the highly specialized training required for detecting cancer from MRIs.

FocalNet is an artificial neural network that can help radiologists improve their ability to diagnose prostate cancer by using an algorithm comprising over one million trainable variables. The UCLA researchers trained the system by making it analyze MRI scans of 417 men with prostate cancer. The scans were fed into the system so that it could learn to assess and classify tumors in a consistent way and have it compare the results to the actual pathology specimen. The researchers tested FocalNet and found it to be 80.5% accurate in reading MRIs, as compared to radiologists having at least 10 years of experience who were 83.9% accurate. This suggests that an AI system could save time and potentially provide diagnostic guidance to less-experienced radiologists.

Related Links:
University of California Los Angeles


New
Gold Member
X-Ray QA Meter
T3 AD Pro
Wall Fixtures
MRI SERIES
Portable X-ray Unit
AJEX130HN
NMUS & MSK Ultrasound
InVisus Pro

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.