We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Machine-Learning Algorithm Diagnoses Cancer Early and Accurately

By MedImaging International staff writers
Posted on 29 Aug 2019
Print article
Image: Researchers used synthetic images to train a machine-learning algorithm that can assist in more quickly and correctly detecting breast cancer (Photo courtesy of the University of Southern California).
Image: Researchers used synthetic images to train a machine-learning algorithm that can assist in more quickly and correctly detecting breast cancer (Photo courtesy of the University of Southern California).
A team of researchers from the University of Southern California (Los Angeles, CA, USA) used synthetic images to train a machine-learning algorithm that can assist in more quickly and correctly detecting breast cancer. The researchers first created physics-based models that showed varying levels of key properties and then used thousands of data inputs derived from those models to train the machine-learning algorithm. These kinds of techniques become important in situations where data is scarce, such as in the case of medical imaging.

The researchers used about 12,000 synthetic images to train the machine-learning algorithm. By providing enough examples, the algorithm can glean different features inherent to a benign tumor versus a malignant tumor and make the correct determination. After achieving nearly 100% classification accuracy on other synthetic images, the researchers tested the algorithm on real-world images to determine its accuracy in providing a diagnosis and measured the results against biopsy-confirmed diagnoses associated with those images. The machine-learning algorithm achieved an accuracy rate of about 80% and is now being further refined by using more real-world images as inputs.

Based on the principles used for training the machine-learning algorithm for breast cancer diagnosis, the researchers are now looking to train the algorithm to better diagnose renal cancer through contrast-enhanced CT images. The researchers believe that machine-learning algorithms are unlikely to replace a radiologist’s role in determining diagnosis, but will instead serve as a tool for guiding radiologists to reach more accurate conclusions.

“The general consensus is these types of algorithms have a significant role to play, including from imaging professionals whom it will impact the most. However, these algorithms will be most useful when they do not serve as black boxes,” said Assad Oberai, Hughes Professor in the Aerospace and Mechanical Engineering Department at the USC Viterbi School of Engineering. “What did it see that led it to the final conclusion? The algorithm must be explainable for it to work as intended.”

Related Links:
University of Southern California

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Portable X-ray Unit
AJEX130HN
New
Ultrasound Imaging System
P12 Elite
New
Diagnostic Ultrasound System
MS1700C

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.