We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Metamaterials to Make MRI Scans Faster, Cheaper, and More Accurate

By MedImaging International staff writers
Posted on 29 Aug 2024
Print article
Image: A wearable jewelry-like bracelet cuts background noise to dramatically boost the power of MRI (Photo courtesy of Boston University)
Image: A wearable jewelry-like bracelet cuts background noise to dramatically boost the power of MRI (Photo courtesy of Boston University)

Magnetic resonance imaging (MRI) has revolutionized how clinicians diagnose and plan treatment for various conditions by allowing noninvasive internal views of the human body. Despite its benefits, the most advanced MRI technology is often inaccessible due to its bulk, rigidity, and high cost, which limits its availability, especially in low-resource and remote areas. Aiming to make MRI technology more accessible, engineers are now innovating devices that can enhance the speed, affordability, and precision of scans. They are utilizing metamaterials—structures crafted from common materials like copper, fabric, and plastic designed to control electromagnetic waves and radio frequencies—to improve MRI capabilities significantly.

These innovations are being spearheaded by the Boston University College of Engineering (Boston, MA, USA), where engineers have introduced tools like resonators that adjust magnetic fields and wearable devices resembling jewelry that reduce scan interference. Their work includes developing "intelligent metamaterials" to speed up MRI scans and a tunable helmet designed to refine brain imaging and reduce the duration of MRI scans. These advancements are detailed across various recent journal publications. One of the latest papers, published in Advanced Science, explores wearable metamaterials that conform to body parts such as elbows or knees. The research includes devices that envelop the ankle like a brace, enhancing imaging precision. These tools use computationally designed helical resonators, constructed from plastic and thin copper coils, that fine-tune MRI magnetic fields. This technology not only boosts the signal-to-noise ratio, enhancing image clarity by minimizing background electromagnetic noise but also employs sophisticated algorithms that perform rapid 3D scans to determine optimal resonator arrangement using circle packing principles. These principles ensure that the coils are compact and effectively positioned.

Furthermore, these designs can resonate at specific frequencies and are incorporated into comfortable, wearable cuffs. Another study in Advanced Materials introduces a novel approach using coaxial cables—commonly used for internet connectivity—which are ideal for carrying and insulating high-frequency electrical signals. Researchers have developed lightweight, fabric-based wearable metamaterials that position these cables close to the scanned body part, such as the knee, enhancing the proximity and effectiveness of the MRI. Advancing their research further, in a publication in Science Advances, the team showcased a wireless, body-hugging metamaterial that passively enhances MRI signals. This design uses coaxial cables configured into freestanding cuffs without the need for fabric, optimizing signal-to-noise ratios for clearer images. These elegant structures, resembling modern art or custom jewelry, have been proven to significantly enhance the quality of MRI scans of the spine, wrist, and even individual fingers, demonstrating their potential to transform MRI accessibility and effectiveness dramatically.

“Our recent designs demonstrate several strategies for using metamaterials to boost MRI using low-cost materials, which we hope will be translated into technologies that allow more patients around the world to benefit from MRI,” said Xin Zhang, a BU College of Engineering distinguished professor of engineering, who is leading the team that hopes to expand access to MRI scans, making them faster—and cheaper.

Related Links:
Boston University College of Engineering

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Radiation Therapy Treatment Software Application
Elekta ONE
NMUS & MSK Ultrasound
InVisus Pro
Radiology Software
DxWorks

Print article

Channels

Ultrasound

view channel
Image: A transparent ultrasound transducer-based photoacoustic-ultrasound fusion probe, along with images of a rat’s rectum and a pig’s esophagus (Photo courtesy of POSTECH)

Transparent Ultrasound Transducer for Photoacoustic and Ultrasound Endoscopy to Improve Diagnostic Accuracy

Endoscopic ultrasound is a commonly used tool in gastroenterology for cancer diagnosis; however, it provides limited contrast in soft tissues and only offers structural information, which reduces its diagnostic... Read more

General/Advanced Imaging

view channel
Image: The results of the eight-view 3D CT reconstruction from a public dataset (Photo courtesy of Medical Physics, doi.org/10.1002/mp.12345)

AI Model Reconstructs Sparse-View 3D CT Scan With Much Lower X-Ray Dose

While 3D CT scans provide detailed images of internal structures, the 1,000 to 2,000 X-rays captured from different angles during scanning can increase cancer risk, especially for vulnerable patients.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.