We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Researchers Develop Technique for Noninvasive Diagnosis of Non-Alcoholic Fatty Liver Disease in Children

By MedImaging International staff writers
Posted on 15 Feb 2015
Print article
Image: MRI of severe NAFLD in a child\'s liver with 38% fat (1% is normal) (Photo courtesy of UCSD).
Image: MRI of severe NAFLD in a child\'s liver with 38% fat (1% is normal) (Photo courtesy of UCSD).
Non-Alcoholic Fatty Liver Disease occurs when large droplets of fat are deposited in the liver. NAFLD is related to insulin resistance, and risk factors include obesity and diabetes.

Currently, NAFLD is diagnosed by specialists, who carry out a biopsy of liver tissue and examine it under a microscope. Diagnosis is graded by pathologists based on the extent off steatosis in liver cells. NAFLD is common in children in the United States (US) and the Western World and can lead to hepatitis, cirrhosis, scars in liver tissue, and liver cancer. Most cases are never diagnosed.

Now researchers at the University of California, San Diego (UCSD; San Diego, California, USA) School of Medicine have developed a noninvasive technique to detect NAFLD, using magnitude-based Magnetic Resonance Imaging (MRI). The researchers compared standard liver biopsy with the MRI technique to estimate Liver Proton Density Fat Fraction (PDFF) in 174 children. They found a significant link between liver fat determined by pathology, and that measured by the new MRI technique. The new method correctly classified the presence of fatty liver tissue in 65%–90% of the children.

Jeffrey B. Schwimmer, MD, professor of clinical pediatrics at UC San Diego said, “A noninvasive method for diagnosing and/or evaluating NAFLD has the potential to impact millions of children. We are especially excited about the promise of the technology for following children with NAFLD over time. However, further refinements will be needed before this or any other MRI technique can be used to diagnose NAFLD in an individual child.”

Related Links:

UCSD


Radiation Therapy Treatment Software Application
Elekta ONE
Portable X-ray Unit
AJEX140H
X-Ray Illuminator
X-Ray Viewbox Illuminators
Diagnostic Ultrasound System
MS1700C

Print article

Channels

Nuclear Medicine

view channel
Image: In vivo imaging of U-87 MG xenograft model with varying mass doses of 89Zr-labeled KLG-3 or isotype control (Photo courtesy of L Gajecki et al.; doi.org/10.2967/jnumed.124.268762)

Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors

Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.