We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




MRI Helps Determine 3D Architecture of Human Cervix

By MedImaging International staff writers
Posted on 01 Jan 2018
Print article
Image: The fibers encircling the cervical canal provide strength and support (Photo courtesy University of Leeds).
Image: The fibers encircling the cervical canal provide strength and support (Photo courtesy University of Leeds).
A new study describes how three-dimensional (3D) magnetic resonance imaging (MRI) can be used to monitor women for weaknesses in the cervix, helping to prevent miscarriage.

Researchers at the University of Leeds (United Kingdom) conducted a cross-sectional study, which involved high-resolution diffusion tensor MRI (DT-MRI) ex-vivo measurements of seven cervices obtained at hysterectomy for a benign lesion, using a 9.4-T Bruker nuclear magnetic resonance (NMR) spectrometer. A deterministic algorithm was used to visualize underlying fiber organization in order to determine the microarchitecture of the human cervix, and identify occlusive structures in the region corresponding to the internal cervical os.

The images revealed a fibrous structure running along the upper part of the cervix, which becomes much more pronounced near to where it joins the womb. The fibers are made of collagen and smooth muscle and form a ring around the upper aspect of the cervical canal. During pregnancy, the fibers provide a strong supporting barrier that keeps the fetus and amniotic sac in place, and prevents microorganisms from entering the uterus. During labor, the body releases chemicals that open the cervix, allowing the fetus to enter the birth canal. The study was published on December 11, 2017, in BJOG.

“By applying the imaging techniques that have been used on the brain, we can get a much clearer understanding of the tissue architecture that gives the cervix its unique biomechanical properties,” said Mr. Nigel Simpson, associate professor in obstetrics and gynecology at Leeds University. “This study's findings have encouraged us to explore new imaging techniques to check the integrity of these fibers before or during pregnancy in order to identify at-risk mums, intervene earlier, and so prevent late pregnancy loss and pre-term birth.”

Water molecules undergo random Brownian motion, also known as diffusion. MRI is sensitive to this motion, as controlled by the b-value. When the b-value equals zero, the images are not weighted by diffusion; when the b-value is greater than zero the images are diffusion-weighted. When the diffusion is hindered, by cellular membranes, the myelin shield, etc., the signal is higher. DT-MRI can thus be used to visualize fiber structures, as it can readily differentiate water molecule diffusivities both along and against the fiber.

Related Links:
University of Leeds

New
Portable HF X-Ray Machine
PORTX
Mobile Barrier
Tilted Mobile Leaded Barrier
New
Transducer Covers
Surgi Intraoperative Covers
Radiation Therapy Treatment Software Application
Elekta ONE

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.