We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Technology Reduces MRI Development Costs

By MedImaging International staff writers
Posted on 30 Jan 2018
Print article
Image: Examples of the new low-cost magnets produced in Russia (Photo courtesy of MISiS).
Image: Examples of the new low-cost magnets produced in Russia (Photo courtesy of MISiS).
A new engineering solution will allow the production efficient magnetic resonance imaging (MRI) devices that can reduce the cost of an MRI scan to half of what it is now.

Developed jointly by the National University of Science and Technology (MISiS; Moscow, Russia) and Magneton (Vladimir, Russia), the environmentally-friendly, low-field MRI prototype is based on the use of low-cost, hard-magnetic materials and permanent magnets manufactured from alloys of rare, domestic earth metals and their compounds, including materials obtained during the processing of industrial waste magnetic production. All magnetic materials and components are produced in Russia.

The use of soft magnetic materials allows the production of conductors for the magnetic system of the scanner that exhibit low loss, while still maintaining high values of magnetization saturation, reaching values of more than 2T. In addition, cryogenic technologies--such as liquid nitrogen and helium fluid--are not required to run the new MRI machine, unlike devices that use superconducting electromagnets. The power consumption of the scanner will thus be less than one kW.

According to the researchers, the cost savings gained will allow most small clinics and private-practice doctors to use these cheaper, low-field MRI machines, which cover the overwhelming majority of most common diagnostic tests. In addition, larger hospitals, especially those interested in local spectroscopy and research in the field of functional tomography, while retaining the need for machines with stronger magnetic fields, will also be able to buy scanners with weak and medium-sized fields as second and third installations for mass screening.

“During the production of raw materials for permanent magnets we have managed to reduce their cost by 1.5 times through the use of industrial waste magnetic production and cheap alloys of rare earth metals,” said project leader Evgeny Gorelikov, PhD, deputy director of the MISiS Engineering Center for Industrial Technologies. “All this allowed us to design and reduce the weight of permanent magnets used in the design of magnetic systems by almost 30%, and thus to reduce the cost of the devices.”

MRI scanners can have ultraweak, weak, medium, strong and superstrong magnetic fields. The highest-quality pictures are taken by using superconducting magnetic systems generating very strong magnetic fields, which provide the highest image resolution.

Related Links:
National University of Science and Technology
Magneton
New
Portable X-ray Unit
AJEX140H
Mobile Barrier
Tilted Mobile Leaded Barrier
3T MRI Scanner
MAGNETOM Cima.X
New
Portable HF X-Ray Machine
PORTX

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.