We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Wearable MRI Detector Captures Anatomical Motion

By MedImaging International staff writers
Posted on 23 May 2018
Print article
Image: The wearable MRI glove is designed to image moving joints and aid in diagnosing repetitive strain injuries (Photo courtesy of NYU Langone).
Image: The wearable MRI glove is designed to image moving joints and aid in diagnosing repetitive strain injuries (Photo courtesy of NYU Langone).
A new study describes how a magnetic resonance imaging (MRI) element woven into a glove-like detector could aid the diagnosis of repetitive strain injuries such as carpal tunnel syndrome.

Researchers at NYU Langone Medical Center (New York, NY, USA) and New York University (NYU, USA) have designed a wearable detector array for MRI of the hand that is based on high-impedance coils that can cloak themselves from electrodynamic interactions. The MRI signal is produced by hydrogen protons; since no electric current is created by the MRI signal, the new receiver coils no longer create magnetic fields that interfere with neighboring receivers, thus removing the need for rigid structures. The coils do not suffer from signal-to-noise (SNR) degradation mechanisms typically observed with the use of traditional low-impedance elements.

While MRI can efficiently image muscles, nerves, and even cartilage, which are difficult to study using other non-invasive methods, tendons and ligaments, which are made of dense proteins instead of fluid, remain difficult to see independently, because both appear as black bands running alongside bone. But with the new coils stitched into a cotton glove, they could generate images of freely moving muscles, tendons, and ligaments. The new coils revealed how the black bands moved in concert with the bones, which could help to catalogue differences that come with injury. The study was published on May 4, 2018, in Nature Biomedical Engineering.

“We wanted to try our new elements in an application that could never be done with traditional coils, and settled on an attempt to capture images with a glove,” said senior author Martijn Cloos, PhD, of the department of radiology at NYU Langone Health. “We hope that this result ushers in a new era of MRI design, perhaps including flexible sleeve arrays around injured knees, or comfy beanies to study the developing brains of newborns.”

The densely packed resonant structures used for MRI, such as nuclear magnetic resonance phased array detectors, suffer from resonant inductive coupling, which restricts the coil design to fixed geometries, in which receiver coils are painstakingly arranged to cancel out magnetic fields in neighboring coils. Once the best arrangement is set, the coils can no longer move relative to one another, constraining the ability of MRI to image complex, moving joints. But by using high-impedance detectors, the receiver coils no longer create magnetic fields that interfere with neighboring receivers, thus removing the need for rigid structures.

Related Links:
NYU Langone Medical Center
New York University

Ultrasound Imaging System
P12 Elite
New
MRI System
Ingenia Prodiva 1.5T CS
NMUS & MSK Ultrasound
InVisus Pro
New
Portable X-ray Unit
AJEX140H

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.