We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Philips Healthcare

Operates in Diagnostic Imaging Systems, Patient Care and Clinical Informatics, Customer Services, and Home Healthcare... read more Featured Products: More products

Download Mobile App




AI Algorithm Automatically Detects Artifacts on MRI Scans

By MedImaging International staff writers
Posted on 12 Jun 2023
Print article
Image: VitaLenz is designed to assist MR technologists during scanning (Photo courtesy of Freepik)
Image: VitaLenz is designed to assist MR technologists during scanning (Photo courtesy of Freepik)

Advancements in magnetic resonance (MR) acceleration techniques have transformed MR productivity. Moreover, incorporating artificial intelligence (AI) has the potential to streamline MR workflow and speed up image acquisition. However, operator-assisted technologies have failed to catch up with MRI advances. This gap could now be bridged with a novel AI model developed to identify typical MRI artifacts with high sensitivity, precision, and speed. The adoption of such assistive technologies can ensure image quality and accelerate the clinical uptake of newer imaging techniques.

Scientists at Philips (Amsterdam, The Netherlands) have developed VitaLenz, an AI algorithm capable of automatically identifying artifacts in MRI scans. This real-time object detection convolutional neural network (CNN) was trained on 4,606 brain images and is designed to support MR technologists during scanning. The model was trained using three types of image contrasts (T1-weighted, T2-weighted, and FLAIR) and three imaging planes (axial, sagittal, and coronal). These images were further processed to generate six common image artifacts: motion, wrap, blurring, bias field, RF spike, and geometric distortion. Subsequently, the model was put to the test on 570 MR images, both with and without artifacts, and assessed for sensitivity, specificity, and accuracy. Additionally, a subset of test images was examined by eight registered MR technologists, each with an average of 17.2 years of experience, to compare the model's performance with human readers.

The researchers found that VitaLenz demonstrated a similar performance compared with the human reader group in terms of sensitivity and accuracy. Furthermore, on average, VitaLenz took a mere 0.477 seconds per image to detect, label, and locate artifacts. These results suggest that VitaLenz has the capacity to identify, label, and locate MR image artifacts with high sensitivity, accuracy, and speed. Although the model showcased considerably lower specificity, its high sensitivity indicates its potential use in identifying images containing artifacts that may require re-examination or adjustment. In addition, VitaLenz's image evaluation speed substantially surpasses that of human readers and remains unaffected by the fatigue experienced by technologists when analyzing thousands of images during a typical shift.

"As new technology to accelerate image acquisition is developed and productivity demands are increased, it is imperative that technology that assists the MR technologist is created in parallel," said Joel Batey, a MR clinical consultant at Philips who presented the findings at the recent International Society for Magnetic Resonance in Medicine (ISMRM) meeting. "As MR image acceleration techniques advance, it is important to co-create tools that assist the technologist to ensure patient care and image quality is maintained."

Related Links:
Philips

Digital Radiographic System
OMNERA 300M
Ultra-Flat DR Detector
meX+1717SCC
LED-Based X-Ray Viewer
Dixion X-View
New
Ultrasound Table
Women’s Ultrasound EA Table

Print article

Channels

Ultrasound

view channel
Image: The model trained on echocardiography, can identify liver disease in people without symptoms (Photo courtesy of 123RF)

Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms

Echocardiography is a diagnostic procedure that uses ultrasound to visualize the heart and its associated structures. This imaging test is commonly used as an early screening method when doctors suspect... Read more

Nuclear Medicine

view channel
Image: A repurposed ALS drug has become an imaging probe to help diagnose neurodegeneration (Photo courtesy of St. Jude Children’s Research Hospital)

Innovative PET Imaging Technique to Help Diagnose Neurodegeneration

Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease, are often diagnosed only after physical symptoms appear, by which time treatment may no longer be effective.... Read more

General/Advanced Imaging

view channel
Image: Whole-brain PACT system and in vivo morphological imaging (Photo courtesy of Advanced Science)

Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring

Stroke is the second leading cause of death globally, claiming millions of lives each year. Ischemic stroke, in particular, occurs when a blood vessel that supplies blood to the brain becomes blocked.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.