We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Deep Learning-Based Reconstruction Algorithm Halves Lumbar MRI Scan Times

By MedImaging International staff writers
Posted on 06 Jul 2023
Print article
Image: A deep learning-based reconstruction algorithm has been shown to improve lumbar MRI scan times (Photo courtesy of Freepik)
Image: A deep learning-based reconstruction algorithm has been shown to improve lumbar MRI scan times (Photo courtesy of Freepik)

Low back pain, with its myriad of common and potential causes, can often be identified through magnetic resonance imaging (MRI), a diagnostic imaging modality increasingly utilized in modern medicine. MRI offers superior soft tissue resolution and does not expose patients to ionizing radiation. However, it is impaired by lengthy acquisition times and the need for parameter adjustments to enhance image quality, which can further extend scan times. Over recent years, artificial intelligence (AI), specifically deep learning (DL), has made significant strides in various imaging areas, including image classification, segmentation, denoising, super-resolution, and image synthesis/transformation. Nevertheless, the impact of AI algorithms on routine whole MRI lumbar spine protocol acquisition has yet to be explored.

In a new study, researchers at Sant'Andrea University Hospital (Rome, Italy) compared quantitative and subjective image quality, scanning time, and diagnostic confidence between a novel deep learning-based reconstruction (DLR) algorithm and the standard MRI protocol for the lumbar spine. By using the DLR algorithm, researchers were able to cut the duration of lumbar MRI exams by half. Furthermore, these improved scan times did not compromise image quality but rather enhanced the signal-to-noise ratio. For this study, GE Healthcare's FDA-approved AIR Recon DL algorithm was applied to the exams of 80 healthy volunteers who underwent a 1.5T MRI examination of the lumbar spine between September 2021 and May 2023. Both the DLR algorithm and standard protocols were utilized to complete sequences, which were later assessed by two radiologists who were unaware of the reconstruction techniques used.

The DLR algorithm yielded a notable reduction in protocol scanning time, reducing it from almost 13 minutes to just over 6 minutes. The blinded radiologists reported that the reconstruction algorithm provided a higher SNR across all sequences and superior CNR for axial and sagittal T2-weighted fast spin echo images. Both readers rated the overall image quality for all sequences as superior with the DLR, leading the research team to suggest that the DLR protocol can be safely integrated into clinical practice. The team also noted additional benefits of shortening lumbar MRI protocols, including cost-effectiveness and enhanced patient compliance, especially for those who are claustrophobic or experiencing severe physical pain.

Related Links:
Sant'Andrea University Hospital 

New
Radiation Shielding
Oversize Thyroid Shield
Portable Color Doppler Ultrasound Scanner
DCU10
New
HF Stationary X-Ray Machine
TR20G
New
Ultrasound Needle Guide
Ultra-Pro 3

Print article

Channels

Ultrasound

view channel
Image: The model trained on echocardiography, can identify liver disease in people without symptoms (Photo courtesy of 123RF)

Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms

Echocardiography is a diagnostic procedure that uses ultrasound to visualize the heart and its associated structures. This imaging test is commonly used as an early screening method when doctors suspect... Read more

Nuclear Medicine

view channel
Image: A repurposed ALS drug has become an imaging probe to help diagnose neurodegeneration (Photo courtesy of St. Jude Children’s Research Hospital)

Innovative PET Imaging Technique to Help Diagnose Neurodegeneration

Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease, are often diagnosed only after physical symptoms appear, by which time treatment may no longer be effective.... Read more

General/Advanced Imaging

view channel
Image: Whole-brain PACT system and in vivo morphological imaging (Photo courtesy of Advanced Science)

Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring

Stroke is the second leading cause of death globally, claiming millions of lives each year. Ischemic stroke, in particular, occurs when a blood vessel that supplies blood to the brain becomes blocked.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.