We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Smaller, Less Expensive Portable MRI Systems to Expand Applications in Various Health Care Settings

By MedImaging International staff writers
Posted on 19 Jul 2023
Print article
Image: New measurements aim to advance and validate portable MRI technology (Photo courtesy of NIST)
Image: New measurements aim to advance and validate portable MRI technology (Photo courtesy of NIST)

Magnetic Resonance Imaging (MRI) machines offer detailed views of the body's non-bony structures like the brain, muscles, and ligaments, and are instrumental in identifying tumors and diagnosing various ailments. Nonetheless, their high cost, bulkiness, and dependency on powerful magnets limit their availability, primarily to large healthcare facilities. In response to this, companies are designing portable MRI machines that rely on lower-strength magnetic fields. These innovative models hold the potential to extend MRI applications, possibly being incorporated in mobile environments like ambulances. Their reduced cost could also enable greater accessibility, especially in underprivileged communities and developing nations. However, further research is crucial to comprehend the connection between low-field images and the underlying tissue properties they represent.

Researchers at the National Institute of Standards and Technology (NIST, Gaithersburg, MD, USA) have been exploring ways to advance and validate the use of low-field MRI technology for creating images with weaker magnetic fields. In a recent study, the team employed a portable MRI machine available in the market to examine brain tissue characteristics at low magnetic field strength. They used a 64 millitesla magnetic field, significantly lower than traditional MRI machines, to image the brain tissue of ten volunteers. The MRI system was able to produce distinctive images of the entire brain, including its gray matter, white matter, and cerebrospinal fluid. Each of these brain constituents responds uniquely to low magnetic fields, generating distinct signals that offer quantitative information about each component.

Separately, NIST researchers are also investigating materials that could dramatically improve the image quality of low-field MRI scans. MRI contrast agents, which enhance image contrast, making it easier for radiologists to identify anatomical features or evidence of disease, are generally used in MRI at conventional magnetic field strengths but are relatively new in the area of low-field MRI scanners. Researchers have discovered that contrast agents behave differently at lower field strengths, indicating a potential to explore new types of magnetic materials for image enhancement.

The team at NIST tested several magnetic contrast agents' sensitivity at low magnetic fields. The findings revealed that iron oxide nanoparticles were more effective than conventional contrast agents made from gadolinium, a rare-earth metal. At low magnetic field strength, the nanoparticles yielded sufficient contrast utilizing only about one-ninth of the concentration of the gadolinium particles. Moreover, the human body can break down iron oxide nanoparticles, thereby preventing potential accumulation in tissue, unlike gadolinium, which could affect the interpretation of future MRI scans if not accounted for.

Related Links:
NIST

New
Portable HF X-Ray Machine
PORTX
Ultra-Flat DR Detector
meX+1717SCC
New
Digital Radiography System
DigiEye 330
New
Mammo 3D Performance Kits
Mammo 3D Performance Kits

Print article

Channels

Ultrasound

view channel
Image: Artificial intelligence can improve ovarian cancer diagnoses (Photo courtesy of 123RF)

AI-Based Models Outperform Human Experts at Identifying Ovarian Cancer in Ultrasound Images

Ovarian tumors are commonly found, often by chance. In many regions, there is a significant shortage of ultrasound specialists, which has raised concerns about unnecessary medical interventions and delayed... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.