We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Aneurysm Prediction System Demonstrates 98% Accuracy

By MedImaging International staff writers
Posted on 21 Dec 2023
Print article
Image: A 4D flow MRI scan of a human aorta (Photo courtesy of Ethan Johnson)
Image: A 4D flow MRI scan of a human aorta (Photo courtesy of Ethan Johnson)

An aortic aneurysm is a condition where the aorta, the body's largest artery, swells to more than 1.5 times its normal size, leading to a weakened arterial wall. Over time, this weakening can progress to the point where the aorta can't handle the pressure from blood flow, potentially causing a rupture. While this occurrence is relatively rare, it's typically unforeseen and is almost invariably lethal. Despite the seriousness of aortic aneurysms, the precise mechanics behind their development have remained a mystery, leaving the medical field without a standardized method for predicting them. Researchers have now introduced the first physics-based metric to predict the possibility of an individual experiencing a fatal aortic aneurysm, which often exhibits no warning signs until it's too late.

Traditionally, medical professionals gauge the risk of rupture by considering various factors such as the patient's age, lifestyle, and the aorta's size. They monitor the aorta's growth through periodic imaging tests. When the aorta enlarges rapidly or excessively, the patient might undergo surgery to reinforce the weakened wall, a procedure not without its own set of risks. Researchers at Northwestern University (Evanston, IL, USA) set out to eliminate the guesswork from predicting future aneurysms by focusing on the fundamental physics underlying the problem. In their study, they identified abnormal aortic growth by detecting subtle oscillations in the blood vessel's wall. These oscillations or "flutterings" occur as blood flows through the aorta, causing it to ripple similarly to a flag in the wind. Whereas a stable flow signifies healthy, regular growth, an unstable flutter strongly indicates potential abnormal growth and risk of rupture.

This groundbreaking approach led to the development of the "flutter instability parameter" (FIP), a metric that has shown a 98% accuracy rate in predicting future aneurysms, typically three years post-initial measurement. For a personalized FIP assessment, patients require just one 4D flow magnetic resonance imaging (MRI) scan. This predictive metric could enable doctors to proactively manage high-risk patients with medications or other interventions, potentially preventing the aorta from reaching a critical size. The research team is now investigating whether the FIP can throw light on the development of other cardiovascular conditions and determining which prevention strategies might be most effective based on patient-specific FIPs to halt aneurysm progression.

“Aortic aneurysms are colloquially referred to as ‘silent killers’ because they often go undetected until catastrophic dissection or rupture occurs,” said Northwestern’s Neelesh A. Patankar, senior author of the study. “The fundamental physics driving aneurysms has been unknown. As a result, there is no clinically approved protocol to predict them. Now, we have demonstrated the efficacy of a physics-based metric that helps predict future growth. This could be transformational in predicting cardiac pathologies.”

Related Links:
Northwestern University

New
Mini C-arm Imaging System
Fluoroscan InSight FD
New
Portable X-ray Unit
AJEX140H
New
Digital Radiographic System
OMNERA 300M
New
X-ray Diagnostic System
FDX Visionary-A

Print article

Channels

Ultrasound

view channel
Image: Breast ultrasound provides an alternative screening modality to mammography in low-resource settings (Photo courtesy of 123RF)

Automated Breast Ultrasound Provides Alternative to Mammography in Low-Resource Settings

China has faced significant challenges in implementing a population-based mammographic screening program, primarily due to a shortage of breast radiologists and issues with screening quality.... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.