We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Aneurysm Prediction System Demonstrates 98% Accuracy

By MedImaging International staff writers
Posted on 21 Dec 2023
Print article
Image: A 4D flow MRI scan of a human aorta (Photo courtesy of Ethan Johnson)
Image: A 4D flow MRI scan of a human aorta (Photo courtesy of Ethan Johnson)

An aortic aneurysm is a condition where the aorta, the body's largest artery, swells to more than 1.5 times its normal size, leading to a weakened arterial wall. Over time, this weakening can progress to the point where the aorta can't handle the pressure from blood flow, potentially causing a rupture. While this occurrence is relatively rare, it's typically unforeseen and is almost invariably lethal. Despite the seriousness of aortic aneurysms, the precise mechanics behind their development have remained a mystery, leaving the medical field without a standardized method for predicting them. Researchers have now introduced the first physics-based metric to predict the possibility of an individual experiencing a fatal aortic aneurysm, which often exhibits no warning signs until it's too late.

Traditionally, medical professionals gauge the risk of rupture by considering various factors such as the patient's age, lifestyle, and the aorta's size. They monitor the aorta's growth through periodic imaging tests. When the aorta enlarges rapidly or excessively, the patient might undergo surgery to reinforce the weakened wall, a procedure not without its own set of risks. Researchers at Northwestern University (Evanston, IL, USA) set out to eliminate the guesswork from predicting future aneurysms by focusing on the fundamental physics underlying the problem. In their study, they identified abnormal aortic growth by detecting subtle oscillations in the blood vessel's wall. These oscillations or "flutterings" occur as blood flows through the aorta, causing it to ripple similarly to a flag in the wind. Whereas a stable flow signifies healthy, regular growth, an unstable flutter strongly indicates potential abnormal growth and risk of rupture.

This groundbreaking approach led to the development of the "flutter instability parameter" (FIP), a metric that has shown a 98% accuracy rate in predicting future aneurysms, typically three years post-initial measurement. For a personalized FIP assessment, patients require just one 4D flow magnetic resonance imaging (MRI) scan. This predictive metric could enable doctors to proactively manage high-risk patients with medications or other interventions, potentially preventing the aorta from reaching a critical size. The research team is now investigating whether the FIP can throw light on the development of other cardiovascular conditions and determining which prevention strategies might be most effective based on patient-specific FIPs to halt aneurysm progression.

“Aortic aneurysms are colloquially referred to as ‘silent killers’ because they often go undetected until catastrophic dissection or rupture occurs,” said Northwestern’s Neelesh A. Patankar, senior author of the study. “The fundamental physics driving aneurysms has been unknown. As a result, there is no clinically approved protocol to predict them. Now, we have demonstrated the efficacy of a physics-based metric that helps predict future growth. This could be transformational in predicting cardiac pathologies.”

Related Links:
Northwestern University

New
Gold Member
X-Ray QA Meter
T3 AD Pro
NMUS & MSK Ultrasound
InVisus Pro
New
Digital X-Ray Detector Panel
Acuity G4
New
Gold Member
X-Ray QA Meter
T3 RG Pro

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.