We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New AI Tool Detects Possible Metastatic Breast Cancer by Improving MRI Sensitivity

By MedImaging International staff writers
Posted on 28 May 2024
Print article
Image: The new AI tool to detect possible metastatic breast cancer could eliminate unnecessary biopsies (Photo courtesy of Polat, et al.; doi.org/10.1148/rycan.230107)
Image: The new AI tool to detect possible metastatic breast cancer could eliminate unnecessary biopsies (Photo courtesy of Polat, et al.; doi.org/10.1148/rycan.230107)

Most breast cancer-related deaths are attributed to metastatic disease, with the initial site of metastasis often being an axillary lymph node. Accurately determining the nodal status is crucial for guiding treatment choices; however, traditional imaging methods alone lack the sensitivity required to definitively exclude axillary metastasis. Consequently, patients frequently need to undergo invasive procedures involving the injection of radioisotopes and dyes, followed by surgery to extract and examine the axillary nodes for the presence of cancer cells. Now, a pioneering artificial intelligence (AI) model that utilizes standard magnetic resonance imaging (MRI) along with machine learning, can identify axillary metastasis—the spread of cancer cells to the lymph nodes under the arms. This noninvasive approach has the potential to enhance the detection of breast cancer metastasis, potentially reducing the need for needle or surgical biopsies.

In a retrospective analysis, researchers at UT Southwestern Medical Center (Dallas, TX, USA) evaluated dynamic contrast-enhanced breast MRI scans from 350 breast cancer patients who had recently been diagnosed and whose nodal status was known. These images, combined with various clinical data, were employed to train the AI model to detect axillary metastasis using machine learning techniques. The results showed that the AI model was significantly more effective at identifying patients with axillary metastasis than either MRI or ultrasound. In practical application, this AI model could have prevented 51% of benign (noncancerous) or unnecessary surgical sentinel node biopsies while accurately identifying 95% of patients with axillary metastasis.

This model, being an adjunct to standard imaging techniques, also has the potential to alleviate the stress and financial burden of further tests for many patients. This study is part of ongoing efforts at UT Southwestern to enhance breast cancer imaging and develop predictive tools for detecting metastasis. The researchers are now focusing on further improving the image analysis process and aim to incorporate a broader array of data to confirm their results.

“That’s an important advancement because surgical biopsies have side effects and risks, despite having a low probability of a positive result confirming the presence of cancer cells,” said study leader Basak Dogan, M.D., at UT Southwestern “Improving our ability to rule out axillary metastasis during a routine MRI – using this model – can reduce that risk while enhancing clinical outcomes.” The findings of the study were published in the journal Radiology: Imaging Cancer on April 12, 2024. 

Related Links:
UT Southwestern Medical Center

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Endoscopic Ultrasound Fine Needle Biopsy Device
Acquire
Fetal Monitor
Avante Compact II
New
Opaque X-Ray Mobile Lead Barrier
2594M

Print article

Channels

Ultrasound

view channel
Image: The augmented reality navigation system could improve lumbar puncture accuracy (Photo courtesy of Clear Guide Medical)

Wearable Ultrasound Navigation System Could Improve Lumbar Puncture Accuracy

A lumbar puncture, or spinal tap, is a common medical procedure in which a hollow needle is inserted into the spinal canal to access cerebrospinal fluid that surrounds the brain and spinal cord.... Read more

Nuclear Medicine

view channel
Image: A new biomarker makes it easier to distinguish between Alzheimer’s and primary tauopathy (Photo courtesy of Shutterstock)

Diagnostic Algorithm Distinguishes Between Alzheimer’s and Primary Tauopathy Using PET Scans

Patients often present at university hospitals with diseases so rare and specific that they are scarcely recognized by physicians in private practice. Primary 4-repeat tauopathies are a notable example.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Focused ultrasound therapy is poised to become an essential tool in every hospital, cancer care center and physician office (Photo courtesy of Arrayus)

Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer

Pancreatic cancer remains one of the most difficult cancers to treat due to its dense tissue structure, which limits the effectiveness of traditional drug therapies. Bracco Imaging S.A. (Milan, Italy)... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.