We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Low-Level Light Therapy Heals Serious Brain Injuries

By MedImaging International staff writers
Posted on 29 May 2024
Print article
Image: Functional MRI brain maps of resting-state functional connectivity in representative age- and sex-matched participants (Photo courtesy of Radiology; doi.org/10.1148/radiol.230999)
Image: Functional MRI brain maps of resting-state functional connectivity in representative age- and sex-matched participants (Photo courtesy of Radiology; doi.org/10.1148/radiol.230999)

Different wavelengths of light have been explored over the years for their potential to enhance wound healing. Now, a new study has found that low-level light therapy could have a beneficial effect on recovery in individuals who have experienced significant brain injuries.

In the study published in the journal Radiology, researchers at Massachusetts General Hospital (MGH, Boston, MA, USA) administered low-level light therapy to 38 patients who had sustained moderate traumatic brain injuries—sufficiently severe to affect cognition or to be detectable via brain scan. The therapy was applied within 72 hours of injury using a helmet that emits near-infrared light. To assess the impact of this treatment, functional MRI scans were used, focusing on the brain's resting-state functional connectivity, which examines communication between brain regions when a person is not actively performing tasks. The MRI evaluations were conducted at different stages: within one week of the injury (acute phase), two to three weeks post-injury (subacute phase), and three months after injury (late-subacute phase).

Of the 38 patients, 21 did not receive light therapy while using the helmet; they served as controls to reduce bias related to patient characteristics and to avoid placebo effects. The findings showed that patients who received light therapy exhibited significantly more changes in resting-state connectivity between seven pairs of brain regions during the acute-to-subacute phase compared to the controls. This increased connectivity was most notable in the first two weeks. However, the researchers did not find long-term differences in connectivity between the two groups, indicating that while light therapy may boost brain connectivity initially, its enduring effects remain unclear. The exact mechanism by which light therapy impacts the brain is still under investigation, although it is believed to involve changes in an enzyme within the cell's mitochondria, leading to increased production of adenosine triphosphate, the energy storage and transfer molecule in cells.

Light therapy is also associated with the dilation of blood vessels and anti-inflammatory effects. Despite the increased connectivity observed in patients treated with light therapy during the acute to subacute phases, no significant differences in clinical outcomes were noted between the treated and control groups. Further studies with larger patient groups and extended imaging timelines beyond three months are needed to better understand the therapeutic potential of light in treating traumatic brain injuries. Researchers anticipate that the scope of light therapy will expand as more findings emerge. The 810-nanometer wavelength light used in this study is already used in various therapeutic contexts. It is safe, straightforward to administer, does not involve surgery or drugs, and can be used outside hospital settings due to the helmet's portability. It could find applications in treating several other neurological conditions such as PTSD, depression, and autism, which are all promising areas for light therapy.

Related Links:
MGH

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Gold Member
X-Ray QA Meter
T3 RG Pro
New
Mammography Analytics Platform
Unifi Analytics Software
New
Digital X-Ray Detector Plate
Acuity DRe

Print article

Channels

Ultrasound

view channel
Image: The augmented reality navigation system could improve lumbar puncture accuracy (Photo courtesy of Clear Guide Medical)

Wearable Ultrasound Navigation System Could Improve Lumbar Puncture Accuracy

A lumbar puncture, or spinal tap, is a common medical procedure in which a hollow needle is inserted into the spinal canal to access cerebrospinal fluid that surrounds the brain and spinal cord.... Read more

Nuclear Medicine

view channel
Image: A new biomarker makes it easier to distinguish between Alzheimer’s and primary tauopathy (Photo courtesy of Shutterstock)

Diagnostic Algorithm Distinguishes Between Alzheimer’s and Primary Tauopathy Using PET Scans

Patients often present at university hospitals with diseases so rare and specific that they are scarcely recognized by physicians in private practice. Primary 4-repeat tauopathies are a notable example.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Focused ultrasound therapy is poised to become an essential tool in every hospital, cancer care center and physician office (Photo courtesy of Arrayus)

Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer

Pancreatic cancer remains one of the most difficult cancers to treat due to its dense tissue structure, which limits the effectiveness of traditional drug therapies. Bracco Imaging S.A. (Milan, Italy)... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.