We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Brain Connectivity on MRI Predicts Parkinson’s Disease Progression

By MedImaging International staff writers
Posted on 10 Jul 2024
Print article
Image: The study results point to a role for MRI in intervention trials to prevent or delay the progression of Parkinson\'s disease (Photo courtesy of 123RF)
Image: The study results point to a role for MRI in intervention trials to prevent or delay the progression of Parkinson\'s disease (Photo courtesy of 123RF)

Parkinson's disease is a degenerative neurological disorder characterized by symptoms such as tremors, slowed movement, and rigidity. These symptoms intensify over time and may be accompanied by cognitive decline and sleep disturbances. Currently, over 8.5 million individuals are affected globally, a number that has doubled in the last 25 years, as reported by the World Health Organization (WHO). A hallmark of Parkinson's disease is the abnormal accumulation of the protein alpha-synuclein within the brain. Under normal conditions, this protein is harmless, but in Parkinson's, it misfolds and aggregates in nerve cells, forming structures called Lewy bodies and Lewy neurites. These protein clumps then spread throughout the brain, causing neuronal damage. Now, a new study has revealed that MRI scans depicting the structural and functional organization of the brain can predict the progression of brain atrophy in patients with early-stage, mild Parkinson's disease.

The study by researchers at IRCCS San Raffaele Scientific Institute (Milan, Italy) explored whether analyzing the brain's structural and functional connections could predict the spread of atrophy in patients with mild Parkinson's disease. They collected MRI data from 86 patients with mild Parkinson's and 60 healthy controls to create a connectome, a detailed map of the brain’s neural connections. This connectome was then used to calculate an index of disease exposure. They found that disease exposure at one and two years was linked to brain atrophy at two and three years post-baseline, respectively. Models incorporating this disease exposure effectively predicted the accumulation of gray matter atrophy over three years in various brain regions.

The results of this study, published in Radiology, lend support to the idea that the functional and structural connectivity between brain regions plays a critical role in the progression of Parkinson's disease. The deterioration of neurons and the build-up of abnormal proteins may disrupt these neural connections, impairing signal transmission and information integration across different brain areas. The study underscores the potential of MRI in intervention trials aimed at preventing or slowing the progression of the disease, particularly when tailored to individual patient profiles. Given the variability in how Parkinson's progresses among individuals, future predictive models will need to account for unique starting conditions and include personalized patient data to maximize their accuracy and effectiveness, as suggested by the researchers.

"In the present study, brain connectome, both structural and functional, showed the potential to predict progression of gray matter alteration in patients with mild Parkinson's disease," said study coauthor Federica Agosta, M.D., Ph.D., associate professor of neurology at the Neuroimaging Research Unit of IRCCS San Raffaele Scientific Institute. "We believe that understanding the organization and dynamics of the human brain network is a pivotal goal in neuroscience, achievable through the study of the human connectome. The idea that this approach could help identify different biomarkers capable of modulating Parkinson's disease progression inspires our work."

Related Links:
IRCCS San Raffaele Scientific Institute

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Ultra-Flat DR Detector
meX+1717SCC
New
Mini C-arm Imaging System
Fluoroscan InSight FD
New
40/80-Slice CT System
uCT 528

Print article

Channels

Ultrasound

view channel
Image: A transparent ultrasound transducer-based photoacoustic-ultrasound fusion probe, along with images of a rat’s rectum and a pig’s esophagus (Photo courtesy of POSTECH)

Transparent Ultrasound Transducer for Photoacoustic and Ultrasound Endoscopy to Improve Diagnostic Accuracy

Endoscopic ultrasound is a commonly used tool in gastroenterology for cancer diagnosis; however, it provides limited contrast in soft tissues and only offers structural information, which reduces its diagnostic... Read more

General/Advanced Imaging

view channel
Image: The results of the eight-view 3D CT reconstruction from a public dataset (Photo courtesy of Medical Physics, doi.org/10.1002/mp.12345)

AI Model Reconstructs Sparse-View 3D CT Scan With Much Lower X-Ray Dose

While 3D CT scans provide detailed images of internal structures, the 1,000 to 2,000 X-rays captured from different angles during scanning can increase cancer risk, especially for vulnerable patients.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.