We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Cardiac MRI Strategy Guides Ablation Procedures for Complex Tachycardias

By MedImaging International staff writers
Posted on 09 Oct 2024
Print article
Image: The new image processing strategy for cardiac MRI identifies culprit areas underlying complex tachycardias (Photo courtesy of 123RF)
Image: The new image processing strategy for cardiac MRI identifies culprit areas underlying complex tachycardias (Photo courtesy of 123RF)

Ablation procedures use energy—typically heat or cold—to target and eliminate small areas of heart tissue that trigger abnormal cardiac arrhythmias, restoring normal heart rhythm. This approach is often applied to treat ventricular tachycardias that result from scarred regions following a myocardial infarction. A new strategy has now been proposed to guide ablation procedures for patients with complex tachycardias. It involves preoperative planning based on a cardiac magnetic resonance (CMR) imaging technique that avoids the biases associated with conventional image analysis.

A multicenter study, led by the National Centre for Cardiovascular Research (Madrid, Spain), has described and validated this novel approach that utilizes advanced CMR image processing methods to identify the regions that sustain ventricular tachycardia in areas affected by postinfarction scarring. The method systematically processes the images, bypassing the biases that can occur when CMR imaging parameters are selected manually. This approach enhances sensitivity in detecting the regions responsible for these arrhythmias. Moreover, it supports preoperative planning by enabling operators to accurately locate these areas before the ablation procedure begins. Published in the journal Europace, the study employed a swine model of myocardial infarction to explore how variability in image processing parameters can obstruct accurate detection of cardiac tissue circuits that drive complex ventricular tachycardias.

Using this animal model, the researchers devised a strategy to overcome this issue. The method was later validated in patients through a multicenter study conducted from 2013 to 2022, involving leading national and international experts. The new image-processing technique simplifies the visualization of cardiac tissue at varying depths, allowing for an objective evaluation of the cardiac wall. It eliminates operator bias in the selection of imaging parameters, enabling accurate detection of the myocardial regions responsible for postinfarction ventricular tachycardia. The streamlined planning of ablation procedures with this method is especially beneficial for patients in whom conventional invasive catheter mapping is contraindicated, as it carries the risk of inducing more severe tachycardias and circulatory collapse. Instead of these risky procedures, the new approach uses pre-ablation cardiac imaging to identify target areas, reducing risk while maintaining the procedure's efficacy.

“The study helps to fill gaps in the integration of imaging data during the planning of ablation procedures for ventricular tachycardia,” said study coordinator David Filgueiras. “By allowing personalized and unbiassed pre-procedure planning, the new method can reduce procedure times and complications, which is especially useful in patients with severe and poorly tolerated episodes. The strategy achieves a high success rate without the need for invasive catheter mapping procedures, which in any case are frequently contraindicated by the patient’s clinical condition.”

“The conventional strategies used to characterize regions causing postinfarction ventricular tachycardia require invasive catheter mapping, a risky process that increases the time needed for the ablation procedure,” added study coauthor, Julián Pérez Villacastín. “The new approach identifies the culprit areas during preoperative planning and offers a standardized and unbiased method, allowing medical professionals in different centers to carry out ablations in a more controlled manner in highly complex patients.”

Related Links:
National Centre for Cardiovascular Research

New
Mammo 3D Performance Kits
Mammo 3D Performance Kits
Ultra-Flat DR Detector
meX+1717SCC
Portable Color Doppler Ultrasound System
S5000
X-ray Diagnostic System
FDX Visionary-A

Print article

Channels

Ultrasound

view channel
Image: Experimental design of the study (Photo courtesy of Tatiana Estifeeva et al./Biomaterials Advances)

New Contrast Agent for Ultrasound Imaging Ensures Affordable and Safer Medical Diagnostics

Ultrasound imaging is an affordable and non-invasive diagnostic method that uses widely available equipment. However, its results are often not highly accurate, and the image quality is heavily dependent... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–positron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.