We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Can Flag Mammograms for Supplemental MRI

By MedImaging International staff writers
Posted on 11 Feb 2025
Print article
Image: Images in a 67-year-old woman with a prior history of breast cancer who underwent combined mammography and MRI screening (Photo courtesy of Radiology, DOI:10.1148/radiol.233067)
Image: Images in a 67-year-old woman with a prior history of breast cancer who underwent combined mammography and MRI screening (Photo courtesy of Radiology, DOI:10.1148/radiol.233067)

To achieve the highest detection accuracy, international guidelines recommend combining mammography and MRI screening for women with a lifetime breast cancer risk of 20% or higher based on family history. However, in the Netherlands, women with a breast cancer risk ranging from 20% to 50% typically do not have access to additional MRI screening due to limited MRI capacity, high costs of implementation, and inconsistent application of eligibility criteria in clinical practice. Several recent studies have shown the potential of artificial intelligence (AI) to enhance cancer detection in mammography screenings, including detecting cancers that may not be visible through standard mammogram interpretations by radiologists. AI could therefore be used to triage mammograms and identify women who might benefit from supplemental MRI after a negative result according to radiologist interpretation. A new study indicates that AI can effectively identify women at higher breast cancer risk within a select Dutch population. The study, published in Radiology, suggests that using AI in mammogram analysis could improve breast cancer detection by identifying patients who are most likely to benefit from breast MRI scans.

In this retrospective study, conducted by researchers at Radboud University Medical Center (Radboudumc, Nijmegen, Netherlands), women with a personal history of breast cancer, dense breasts, a history of high-risk lesions at biopsy, or those with an increased risk due to family history (but no genetic mutations) were classified as "intermediate risk." The researchers utilized a commercially available AI system to analyze the 2D screening mammograms of women they identified as intermediate risk to detect patients most likely to have cancers that were not visible on mammograms (mammographically occult cancers), indicating the need for supplemental MRI. The study cohort included 1,833 consecutive women who underwent at least one screening MRI in combination or alternated with a mammogram between 2003 and 2020, sourced from the patient breast MRI database at Radboudumc. Women with a lifetime breast cancer risk greater than 50% were excluded.

A total of 3,358 mammography exams were performed on 875 women. Of these, 2,819 (84%) exams from 760 women (with an average age of 48.9 years) were processed by the AI system and assigned a case-based suspicion score (ranging from 0 to 10) that ranked the likelihood of malignancy. Combined screening detected 37 (1.3%) breast cancers. In 19 (51%) of these cases, the cancer was not visible on mammography. Using a threshold score of 5 (which allowed supplemental MRI screening for 50% of the women), the AI system selected 31 (84%) of the breast cancer-positive exams for additional MRI screening, including 68% of exams with occult breast cancer that had been missed in the radiologists' initial reading.

"AI could potentially triage mammograms performed in the subgroup and select women that could potentially benefit from supplemental MRI after a negative mammogram," said the study's lead author, Suzanne van Winkel, R.N., M.Sc. "Using AI to triage the mammograms of populations who are not yet eligible for MRI may improve screening results while simultaneously reducing unnecessary costs."

Related Links:
Radboud University Medical Center

New
X-Ray Illuminator
X-Ray Viewbox Illuminators
Ultrasound Imaging System
P12 Elite
New
Ultrasonic Pocket Doppler
SD1
Radiation Therapy Treatment Software Application
Elekta ONE

Print article

Channels

Ultrasound

view channel
Image: Ultrasound detection of vascular changes post-RT corresponds to shifts in the immune microenvironment (Photo courtesy of Theranostics, DOI:10.7150/thno.97759)

Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy

While immunotherapy holds promise in the fight against triple-negative breast cancer, many patients fail to respond to current treatments. A major challenge has been predicting and monitoring how individual... Read more

Nuclear Medicine

view channel
Image: Autoradiography images showing binding of [18F]flortaucipir, [18F]MK6240, and [18F]PI2620 in prefrontal cortex, hippocampus, and cerebellum (A) and in whole-brain hemisphere (B) of control and AD brains (Photo courtesy of UFRGS)

Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s

In Alzheimer’s disease, tau tangles are closely linked to cognitive decline: the greater the number of tangles, the more severe the cognitive impairment. By measuring the amount of tau in brain tissue... Read more

General/Advanced Imaging

view channel
Image: The rugged and miniaturized CT scanner is being designed for use beyond a typical hospital setting (Photo courtesy of Micro-X)

World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC

Conventional CT scanners dominate the global medical imaging market, holding approximately 30% of the market share. These scanners are the current standard for various diagnostic applications, including... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.